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The monitoring of the plant-wide process has attracted much attention in the academic research
and industry application. This paper addresses a novel combination of model-based fault detection
architecture and data-based learning method to achieve the fault detection and location of the series
connected process. First, the serially connected system is analyzed to obtain the partition method
of the whole system and provide the conditions to construct that subsystems. Then the distributed
Principle component analysis which can extract the information from the real measurement of the
subsystems is carried out for the modeling of the TS type of fuzzy inference. A two dimensional
Bayesian based fuzzy model is firstly introduced to achieve nonlinear identification techniques in
the fault diagnosis area. The constructional residuals is generated by comparing output signals of
the TS models and the real measurements of each subsystem. The evaluation of the residuals
examines the fault occurrence with the location information. Finally, the feasibility and efficiency of
the method are evaluated by the Solid Oxide Fuel Cells (SOFC), a New-Energy Power system.

Keywords: Serially Connected Process, Distributed PCA, TS Fuzzy Model, SOFC.

1. INTRODUCTION
With the development of the modern industry, the demand
of the assurance of the safety during the productive pro-
cess is growing while the structure of the plate is becoming
complex. The early fault detection, diagnosis and loca-
tion could make the plate robust to avoid accidents of the
production line in practice which may cause a great eco-
nomic loss. For plant-wide process monitoring, the tradi-
tional concentrated monitoring strategy manages the whole
production data by the dimensionality reduction and fea-
ture extraction.1–3 However, the plate-wide data reduction
may reduce the location information of the system and can
only judge out the fault without the fault location. Besides,
the relationships among different parts of the plant-wide
process are also difficult to characterize.4 Thus, how to
develop efficient monitoring methods for plant-wide pro-
cesses has been a significant challenges in this area.
In fault diagnosis area, there exist two primary methods:

the model-based method and the data-based method. The
model-based method is based on exact process models,
e.g., the first-principle of physical/chemical relationships
between different variables. As a result, they tend to give
more accurate results than the other two methods as long

∗Author to whom correspondence should be addressed.

as the system model is reliable.5–12 In model-based FDI
scheme, there are two stages: (i) the models of the system
are obtained offline. (ii) The residuals are obtained online
and evaluated for each time instant. The residual which is
based on a system model represents our expectation of the
system’s behaviour, and this property can be used to deter-
mine whether or not faults have occurred. Some examples
of residual generators based on the analytical redundancy
scheme are referring to the Kalman filter,11�12 Luenberger
observers, state and output observers13�14 and parity rela-
tions, among others.
Since Data-based process monitoring methods have no

requirement on the process model and the associated
expert knowledge, they can be applied even when the mod-
els and expert knowledge of some complex industrial pro-
cesses/systems are difficult to build and obtain in practice.
Thus they have become more and more popular in recent
years. Those data contain the major process information
and then can be used for modeling, monitoring, and con-
trol. In the past years, a significant progress has been made
in the data-mining and processing area, which can provide
new technologies for the utilization of process monitor-
ing. The traditional multivariate statistical-based method
such as the principal component analysis (PCA),14–18 inde-
pendent component analysis (ICA) methods,19–23 and the
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combination of the ICA-PCA24�25 has several inherent lim-
itations since it can be carried out only by collecting a
lot of data. Recently, a well known one-class classification
method support vector data description (SVDD) has been
introduced for process monitoring.26–28 From the analysis
above, it can be seen that although a large quantity of
data-based process monitoring methods have been devel-
oped in existing works, each of these methods has its own
advantages and disadvantages. A method that works well
under one process condition might not provide a satisfac-
tory monitoring performance under another process con-
dition because the efficiency of each process monitoring
method may depend on the fault and the data character-
istic of specific process. Particularly, most of the meth-
ods are verified by the TE process or other kinds of
known processes,15–28 very few methods can be carried
out in other chemical systems. Recently, several pieces of
research works have already been carried out on experts
systems, such as support vector machine (SVM),29 artifi-
cial neural network (ANN),29�30 Fuzzy mathematics,31 and
so on. The TS model is widely applied in the fault diag-
nosis area because it has fast calculation and the ability to
handle nonlinear systems.

As a benchmark simulation, the Tennessee
Eastman (TE) process was considered as a representative
plant-wide process,11–24 which has been widely used to
test the performance of various monitoring approaches.
However, as a representative new energy resources and
the new field of chemical industry, the Fuel Cell system
has not been reported in existing works. Therefore, this
article takes the Solid Oxide Fuel Cell (SOFC) to provide
a reference to investigate connected systems which are
serially connected and have more variables than TE.

The remainder of this paper is organized as follows.
In Section 2, the serially connected system is introduced
and the sufficient condition of a serially connected sub-
system is provided. In Section 3, the distributed PCA
method is employed to substract the principle information
of the subsystem. Then, in Section 4, the two dimensional
Bayesian based fuzzy model is deduced for system identi-
fication and modeling method. Section 5 provides the fault
detection and diagnosis technique. At last, in Section 6,
the monitoring method is verified by the Solid Oxide Fuel
Cells system. Finally, conclusions and some discussions
are made.

2. SERIALLY CONNECTED SYSTEM
In industry production line, such as chemical engineering,
petrochemical engineering, electric power industry, there
always exists the series connected structure In Figure 1,
The serially connected system is composed of n subsys-
tems. This class of cascade processes are composed of
many subprocesses placed one after another, in such a
way that each subprocess is connected with dynamic con-
trol input coupling between its neighbour subprocesses.
The system information such as energy, substance trans-
mit from the entrance to the exit through each subsystem
and pass the output information to the next until end of
the overall system. In each subsystem, the inputs consist
of not only the outputs information from former subsys-
tem but also the new input quantity which just enters the
system from that position. As a consequence, if the mal-
function happens from one subsystem all the downstream
subsystems would out of order. Therefore, specialities of
the serially connected system can be utilized to detect and
locate the fault at the same time.
The model of the system can be describe as:(

x�k+1�= A�k�x�k�+B�k�u�k�

y�k� = C�k�x�k�
(1)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

xi�k+1�= Aii�k�xi�k�+Bii�k�ui�k�

+
n∑

j=1
j �=i

Aij �k�xj �k�

yi�k�= Cii�k�xi�k�+
∑
j=1
j �=i

Cij�k�xi�k�

(2)

The process system can be divide into several subsys-
tems based on the location or logical and treat all the cor-
relation between the different subsystems as new inputs or
disturbance. If the correlation between two subsystem is
much that the self-correlation in one single system, then
that two subsystems should be treated as one subsystem.
When the correlation of the subsystem is particularly weak
or the impact of the other subparts with a large time delay,
that kind of subsystems could be handled separately.
The determining rule of the subsystem is:

��∑n
j=1
j �=i

Aij �k�xj�k���
��xi�k���

< 1− �̂�Â�k�� (3)

Subsystem 1 Subsystem nSubsystem 3Subsystem 2 ...
x1

y1

u2

y2

u3

y3 yn−1

un

ynx2
x3

Serially connected process

Fig. 1. Serially connected process.
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If all the relationship of the A�k� satisfies the rule, then
the subpart i system can be treated as a independent sub-
system. Otherwise, all the inputs of the whole that disobey
the rule should be regarded as one subsystem logically.

�xi�k��2 >
∥∥∥∥

n∑
j=1
j �=i

Aij �k�xj �k�

∥∥∥∥
2

(4)

In that way, many weakly coupled plantwide control
system can be regarded as the open-loop control system.

3. DISTRIBUTED PCA METHOD
In this section a part dimension reduction method is pro-
posed to obtain the sub-feature space of each subsystem.
The main critical data characteristics in the process indus-
trial are analyzed in the PCA method. The series con-
nected structure of industrial system is quite common in
the plant-wide process. The conventional PCA method can
diagnose the fault occurrence, based on the feature extrac-
tion of the system states. The initial PCA decomposition
carried out upon the whole process variables can decrease
the dimension of the system, but the information of the
whole process is also reduced. To identify the different pat-
terns in the training database, the traditional PCA is mod-
ified to obtain the feature space of the model data. Instead
of reducing the whole X of the system, the new method
reduces the subsystem inputs to get the feature space
of each subsystem. The improved PCA based method is
named part dimensionality reduction, which conserves the
location information of the connected subsystem.
The original variables can be divided as follow:

X = �X1 X2 � � �Xn� (5)

A traditional PCA data decomposition is given as fol-
lows:

X = TPT +E (6)

where T is score matrix, P is loading matrix, and E is the
residual matrix after the analysis of PCA. In the subsys-
tem, n PCA method is carried out to reduce dimensionality
and extract information.

Xi = T iP
T
i +Ei (7)

After all of the n sub-models have been built, the
extracted principal components in each sub-block are
arranged as follows:

T = �T1 T2 � � � Tn� (8)

The traditional monitoring statistic values T 2 and SPE
would not be calculated. The T will be used to model the
data learning model in next section.

4. TS FUZZY MODEL
Many research concerns fault detection and fault isolation
by using a multiple model (MM) approach. The idea of
the MM method is to approximate the considered system
with a set of models. These models represent the system
in a nominal fault-free working regime and in regimes
corresponding to particular failures. Obtaining this set of
models for complex nonlinear system is a difficult and
time-consuming task. Fuzzy models of the TS type can be
constructed only on the basis of input-output data and they
are very good approximators for such systems. Traditional
form of TS fuzzy model can be applied to modeling the
nonlinear relationship between the inputs and the outputs,
by combination of some linear relationship in different
condition of inputs. When the TS fuzzy model recognizes
the relationship of the nonlinear inputs and outputs, the
residual can be generated by compare the TS outputs and
the system outputs. In this section, the Two-dimensional
Bayesian based fuzzy model is proposed to function two
aspect of fault detection:
(i) the models of the system are obtained off line, and
(ii) residuals are obtained on line and evaluated for each
time instant. Both the offline and the online TS modeling
and identification method are derived.

4.1. The Traditional Form
Fuzzy modeling often follows the approach of encoding
expert knowledge expressed in a verbal form in a collec-
tion of if-then rules, creating a model structure. Parameters
in this structure can be adapted using input-output data.
When no prior knowledge about the system is available,
a fuzzy model can be constructed entirely on the basis of
system measurements.
In Ref. [31], an evolving TS fuzzy model was presented

whose rule-based structure is inherited and updated by
adding new rules and modifying the existing rules and
parameters when new data becomes available. Although
the simulated results have proved its effectiveness on a
nonlinear model approximation, this approach is time con-
suming. In order to balance the computational cost and
model accuracy, we have developed the TS model by
adjusting the cluster centers and the consequent parameters
according to a weighted recursive least square (WRLS)
method.
The contribution of the ith TS fuzzy rules to the sys-

tem was expressed in the form of “If� � �Then” statement as
follow:

Ri	 If x1�k� is A
i
1 � � � and xn�k� is A

i
n

Then yi�k+1�= pi
0+pi

1x1+· · ·+pi
nxn
 i = 1�2 · · ·c

where c is the number of fuzzy rules, n is the
input variables number of the TS fuzzy model, x1�k�,
x2�k�� � � �xn�k� are the regressive variables consisting of
output and input data at the kth instance and before,

1878 J. Comput. Theor. Nanosci. 14, 1876–1885, 2017
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x�k� = �x1�k�� x2�k�� � � � xn�k�� is the input vector of the
TS fuzzy model, Ai

1�A
i
2� � � � �A

i
n are the membership func-

tions associated with the ith rule, pi
0� p

i
1� � � � � p

i
n are the

consequent parameters of the submodel (fuzzy rules) i.
Denotes �i as the fitness grade of the submodel i, thus

the model output y(k+1) at the (k+1)th instance can be
calculated by follows:25

First, the model of the TS can be rewritten:

y�k� =
c∑

i=1

�iy
i�k� =

c∑
i=1

�i�p
i
0+· · ·+pi

nxn�k��

=
c∑

i=1

�pi
0+· · ·+pi

n���i+· · ·+�ixn�k��
T

(9)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

��k� = ��1��2� � � � ��r �
T

= �p10�p20� � � � �pc0�p11�p21� � � � �pc1� � � � �pcn�
T 


��k� = ��1� � � � � �c��1x1�k�� � � � � �cx1�k�� � � � �

�1xn�k�� � � � � �cxn�k��
T

(10)

The outputs can be written as:

y�k+1�=��k�T ·
�k� (11)

In that form the antecedent parameters and conse-
quent parameters can be calculated by the least square
method.

4.2. The Two-Dimensional Bayesian Based
Fuzzy Model

For a TS fuzzy model, the most important thing is to
acquire antecedent and consequent parameters. The con-
sequent parameters are acquired by fuzzy cluster method
based on fuzzy C mean value algorithm, and consequent
parameters are obtained with least squared method.

Based on the fuzzy C mean value algorithm the ini-
tial of the cluster center V �1� = �v1�1�� v2�1�� � � � vn�1��
can be obtained by offline identification based on experi-
mental data. The membership degree of x�k� can also be
estimated.

Calculate the distance between the input variable x�k�
and each (k−1)th instant cluster center from the following
equation:

d′
i =

√
n∑

j=1

�xj�k�− vij �k−1��2
 i = 1�2� � � � � c (12)

Estimate the membership degree of x�k� according to
each cluster center

u′
i =

[ c∑
j=1

(
d′
i�k�

d′
j �k�

)]��m−1�/2�

� i = 1�2� � � � � c (13)

The above two parameters of the model can be calcu-
lated by the fuzzy C mean value algorithm and the one
dimensional Bayesian based fuzzy model. However, if the
data cluster is not equal distributed in the data cluster, a
simple sum of the membership degree will not reflect the
physical truth. The the data cluster center with the small-
est amount of data will play the same role with the largest
data cluster center. To overcome that inherent defect of
the one dimensional Bayesian inference, the fitness of the
cluster center is employed. The comparison of the one
and two dimensional Bayesian inference is indicated in the
Figure 2.
When the input equals x(k�, the fitness of the ith regu-

lation to the system output can be calculated by.

�i =
c∑

j=1

(
ui

uj

)
� i = 1�2� � � � � c (14)

Its vector can be calculated by:

��k� = ��1� � � � � �c��1x1�k�� � � � � �cx1�k�� � � � �

�1xn�k�� � � � � �cxn�k��
T (15)

As y�k + 1� and ��k� are both known quantities,
according to formula y(k+1�=��k�
�k�, we can get

��k� = ��T��−1�T · y�k+1� (16)

A B

C

D

E

A B

C

D

E

Fig. 2. The comparison of the one and two dimensional Bayesian inference.
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5. MONITORING METHODOLOGY
5.1. Residual Generation
The conventional fault diagnosis method traditionally con-
structs the X by put the inputs and the outputs in one
single vector, then dimensionality reduction method PCA
is employed. After the dimensionality reduction, the fea-
ture space is acquired, then the analysis of the feature
space could judge out the fault state. This kinds of meth-
ods could realize fault detection, but the dimensionality
reduction also decreases the fault information especially
the fault location information contained in the X. As a
consequence, a novelty fault contain matrix is defined not
only to detect the fault occurrence but also the position
where it take place.
We define the Y as the fault contain matrix:

Y = �y1� y2� � � � yn� (17)

Where, y1� y2� � � � � yn are outputs of the subsystems. The
Y consists of all the states of the subsystems, while tradi-
tional methods treat the subsystems’ outputs as intermedi-
ate states.

5.2. Distributed Fault Detection
At the time fault occur in the series connected system, all
the states from where the error occurred to the end of the
system show to deviate from the normal working position.
As a matter of fact, probably only one malfunction takes
place. As a consequence, located the malfunction place is
of vital importance to recover the wrong running.
In the series connected system, the fault phenomenon

is quite special that the former subsystems fault would

cause the system breakdown along the later subsystems.
Although a series continuous subsystem could be detected
breakdown, the condition is that there may only one
subsystem failure. As a consequence, located the fault
position is of vital important. The structure of the fault
detection and location system is shown in Figure 3. First,
the distributed PCA method of each subsystem is applied
to decrease the dimensionality of the sub-feature space.
Then, the outputs of the all the subsystem is encoded to
a fault-contain matrix. After that the TS fuzzy model is
employed to construct the learning machine of the all the
outputs of the subsystem. The fault information could be
detected by the comparison of the system outputs and the
TS fuzzy model. If the information of the subsystems is
accord with learning system, then it could judge that the
system is working in a normal condition. In the contrast,
it indicates some malfunction occur in the system. Con-
sequently, the fault location strategy should work to judge
the situation of the subsystem. The fault location strategy
will be described in the follow section.

5.3. Residual Evaluation
From the above section the residual is obtained, then the
evaluation should be carried out. After the fault has be
detected, the next important step is fault diagnosis, which
is determine the root causes of the detected fault. These
variables are measured signals with estimated values, gen-
erated by a TS fuzzy model system. When the system is
in normal operation the residual should be close to zero,
and when the fault occurs the residual should be larger
than zero. This property of residuals is used to determine
whether or not faults have occurred. The analysis of each

Subsystem 1 Subsystem nSubsystem 4 Subsystem 3Subsystem 2

PCA PCA PCA PCA PCA

TS Fuzzy model

^Y − Y

Fault Diagnosis and Location

Y

Ŷ
y1

yn

...

.

.

.

x1

y1

u2

y2

u3 u4

y3 yn−1

un

yn

T1
T2

T3
T4 Tn

x1 x2 x3 x4 xn...

Fig. 3. Fault diagnosis of the series connected system.
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Fig. 4. Fault diagnosis and location.

residual, once the threshold is exceeded, leads to the fault
isolation.

When the system is working, the TS fuzzy model cal-
culate the outputs at the same time. Each sampling period
the TS fuzzy model output the model-calculated state of
each subsystem and compare with the real system, shown
in Figure 4.

Y − Ŷ = �y1� y2� � � �yn�− �ŷ1� ŷ2� � � � ŷn�

= ��y1��y2� � � � ��yn�
(18)

The ��y1��y2� � � � ��yn� would obey the normal distribu-
tion N�0��1� to N�0��n� if the fault are not occurred.
If some of the variables in the ��y1��y2� � � � ��yn� dis-
tribute outside of the 3� . Then, the fault is take place from
where the first deviation happen. In that way, the location
of the fault is determined. The monitoring data informa-
tion belonging to each subsystem is defined as R2

i , i is the
number of the subsystem.

R2
i = ��yi���yi�

T (19)

To evaluate the plant-wide performance, all subsystem
monitoring results are aggregated as follows:

R2 = �R2�1��R2�2�� � � �R2�n�� (20)

Where R2
i represent the monitoring result of residuals in

each subsystem.

5.4. The Smoothing Filter
To determine the change trend of the outputs, the residual
of each subsystems need to be handled. The means of the
newest data reflect the variation tendency and contain out-
liers. The M is the mean value of the newest c data, as
the time going the newest data will replace the oldest one.

Mk =
yk−m+1+ yk−m+2 � � � yk

m
(21)

where, the M is the mean value of the newest data, m is
the number chose to reflect the variation trend. The M is
the variable trend insensitive to the sharp change and could
avoid the false alarm. The recursive smoothing filter is

Mk =Mk−1+
ym− yk−m

m
(22)

The recursive smoothing filter can effectively reduce the
effects of measurement noise. The larger the number of
data m would cause the better ability to resist noise in the
system, but at the same time the delay problem is exist
and the real-time effect is bad. As a result, the m is very
important to impact the noise immunity.

6. CASE STUDY
6.1. SOFC System and Model
Solid Oxide Fuel Cells (SOFC) is a new kind of power
device, recently attracts the attention both in academy and
industry. Solid oxide fuel cells (SOFC) convert chemical
energy directly into electrical energy with a great deal
of advantages, such as fuel flexibility, quiet operation,
low emissions, and high efficiency, over traditional power
generation systems. These benign features render SOFC
generation systems are emerging as an attractive alterna-
tive in power applications for domestic, commercial, and
industrial sectors. The system structure of the SOFC is
in neighborhood to neighborhood the topology structure.
Over recent decades, the solid oxide fuel cell (SOFC) has
attracted considerable attention because of its unique char-
acteristics including high efficiency, fuel flexibility and
its environmentally friendly properties, when adopting a
steam reformer to produce hydrogen at high conversion
ratio. However, to our best knowledge the research of fault
diagnosis based on data-driven method of the SOFC sys-
tem have not been reported.
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Fig. 5. Reaction mechanism.

The system consists of five different units:32 gas supply
system, heat exchanger 1, heat exchanger 2, SOFC electri-
cal stack and burner. The system supply electric power by
chemical reaction of fuel gas and oxygen under high tem-
perature condition. The high temperature is provided by
tail burner take advantage of the excess fuel gas. The sys-
tem maintain the balance of heat and power to constantly
supply electric energy. The system model is developed
in MATLAB/Simulink platform using a modularity-based
method. The models of the system components are first
developed, and then they are linked together to represent
the entire system. Since the system model is used for con-
trol oriented analysis and design. The reaction mechanism
is shown in Figure 5. The system structure is shown in
Figure 6.

6.2. Linear Series Structure and Fault Diagnosis
This system has some unique characteristic: First the out-
puts of the whole system, the power and the voltage of

the fuel cell, is not located in the end of series. Then, the
main information transmitted through the system are the
energy, the pressure and the temperature which have no
direct relationship with the electrical signal. Thirdly, the
serially connected isolated structures of the system make
the subpart of the system independent of each other in
some degree. It is a combination of heat transfer process
and electricity generation process.
The system can working in two condition: the con-

stant power condition and the time variant power con-
dition. The constant power condition indicates that the
power termination working in a singe power rating. The
SOFC system just supply a constant power, until the needs
is end. The time variant power condition is more com-
plex than the former one, it means the power provides by
the Fuel Cell is non-constant, as a consequence, the fault
detection would be very difficult. In this article, we diag-
nosis the fault happen both in the power constant condition
and time variant power condition, and provides the TS
fuzzy learn of the SOFC states of the time variant power
condition not the fault.
From the Figure 6 of the SOFC system, although some

pipe connected each other make it seem to be a feed-
back loop in the system, such as the pipeline between the
Burner and the Heat Exchanger 2. As a matter of fact,
the valve embedded in the pipeline control the pressure
and the energy flow into the Heat Exchanger 2 depend
on the demand. Therefore, the pipeline to the EX1 and
the EX2 should be treat as a inputs of that subparts and
the SOFC system is a series connected structure, shown
in the Figure 7.

Burner

Fuel

Blower

Air

Exhaust

Mass flowmeter

Flowmeter

HEX1 HEX2
SOFC
Stack

Fig. 6. Structure of the SOFC system.

BurnerPower
Stack

Heat
Exchanger 2x1 y1

u2

y2

u3

y3

u4

y4

x2

x3

Serially Connected SOFC system

Heat
Exchanger 1

u1

Fig. 7. Series connected system of SOFC.
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Fig. 8. Subsystems in SOFC.
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The SOFC system is separate into 4 subsystems: the
heat exchanger 1 (HEX1), the heat exchanger 2 (HEX2),
the power stack and the burner. In particular, the first part
consists of not only the HEX1 but also the gas supply
system. The second subsystem contains the HEX2 and
the temperature control equipment. In that way, the series
connected system is construct and the fault detection and
diagnosis method can be carried out. The Figure 8 shows
the variables in each subsystems.
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Fig. 10. Residuals of the subsystems.
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Fig. 11. Residuals after smooth filter.

The simulation is put into effect in the MATLAB/
simulink condition with a computer 3 GHz and 12 G
memory. The results show in Figures 9–11. The Figure 9
shows the outputs of burner temperature which is the sys-
tem last outputs. The TS fuzzy model trace the temperature
when the variable is normal operation. When the system
deviate from the normal working condition, the TS output
and the system output are not running at the same tra-
jectory. The Figure 10 shows the R2

i in each subsystems.
In the first 4000 s, the TS fuzzy model adjust its parame-
ters and the learning error appear. After the training period,
the TS model could follow the trajectory of the system.
Figure 11 shows the R2

i results after the smooth filter. It is
indicated that the first two subsystems is working in a nor-
mal condition shown in Figures 11(a) and (b) while the
last two subsystems deviate normal operation condition.
From the above section, it indicates the fault happens in
the subsystem 3 which is the SOFC stack. In that way,
the fault of the whole system can be detected while the
location of the fault is obtained.

7. CONCLUSION
In this work, a fault detection and location method is
present by distributed PCA and dimensional Bayesian
based fuzzy model and the SOFC system is employed
to verify the method. This method is a combination of
model-based fault detection architecture and data-based
learning method, to achieve fault detection and location
of the series connected process. The serially connected
system is analyzed to obtained the partition method of
the whole system and provide the conditions to construct
that subsystems. Then the distributed Principle component
analysis is carried to extract information from the real
measurement of the subsystems for modeling of the TS
type of fuzzy inference. The two dimensional Bayesian

based fuzzy model is firstly introduced to achieve non-
linear identification techniques in the fault diagnosis area.
Both the offline and online data identification and mod-
eling techniques are proposed. The constructional resid-
uals is generated by comparing output signals of the TS
models and the real measurements of each subsystem. The
evaluation of the residuals examines the fault occurrence
with the location information. Finally, the SOFC system is
introduced and the simulation model is built and the series
connected subsystem is construct in the system. The simu-
lation results shows this method can diagnosis the system
fault and the location of the fault can be determined.
For our future work, there are several important issues

that should be noted. First, the fault recovery of the series
connected system could be carried out after fault location.
Second, for the SOFC system if the fault occurrence in a
short time or a long time, the model would not efficient
to diagnosis the fault. As a result, multimodel diagnosis
method should be introduced.
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