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Abstract—It has been recently shown that deep neural net-
works (DNNs) are susceptible to a particular type of attack
that exploits a fundamental flaw in their design. This attack
consists of generating particular synthetic examples referred to
as adversarial samples. These samples are constructed by slightly
manipulating real data-points that change “fool” the original
DNN model, forcing it to misclassify previously correctly classified
samples with high confidence. Many believe addressing this flaw
is essential for DNNs to be used in critical applications such as
cyber security.

Previous work has shown that learning algorithms that en-
hance the robustness of DNN models all use the tactic of
“security through obscurity”. This means that security can be
guaranteed only if one can obscure the learning algorithms from
adversaries. Once the learning technique is disclosed, DNNs
protected by these defense mechanisms are still susceptible to
adversarial samples. In this work, we investigate by examining
how previous research dealt with this and propose a generic
approach to enhance a DNN’s resistance to adversarial samples.
More specifically, our approach integrates a data transformation
module with a DNN, making it robust even if we reveal the
underlying learning algorithm. To demonstrate the generality
of our proposed approach and its potential for handling cyber
security applications, we evaluate our method and several other
existing solutions on datasets publicly available, such as a large
scale malware dataset and MNIST and IMDB datasets. Our
results indicate that our approach typically provides superior
classification performance and robustness to attacks compared
with state-of-art solutions.

Index Terms—Adversarial deep learning, security through
obscurity, data transformation, malware detection.

I. INTRODUCTION

Like all other machine learning approaches, deep learning
is vulnerable to what is known as adversarial samples [9].
This means that they can be easily deceived by non-obvious
and potentially dangerous manipulation [29]. To be specific,
an attacker could use the same training algorithm, back-
propagation of errors, and a surrogate dataset to construct an
auxiliary model. Since this model could provide the attacker
with a capability of exploring a DNN’s blind spots, one can,
with minimal effort, craft an adversarial sample – a synthetic
example generated by slightly modifying a real example which
makes the deep learning system “believe” with high confidence
the sample subtly perturbed belongs to an incorrect class.

This work was done while Qinglong Wang and Alexander G. Ororbia II
was in Penn State.

According to a recent study [9], adversarial samples occur
in a relatively broad subspace, which means it is impractical
to build a defense that can rule out all adversarial samples.
As such, the design principle followed by existing defense
mechanisms is not to harden a DNN to be naturally resistant
to any adversarial samples. Rather, the focus is on hiding that
subspace, making it difficult for adversaries to find useful
adversarial samples. For example, representative defenses –
adversarial training [9] and defensive distillation [23] both
increase the complexity of original DNNs with the goal of
making adversarial samples – problematic for original DNNs
– no longer effective.

However, in this work we show that the defenses proposed
are far from ideal and can even be considered dangerous. In
particular, we demonstrate that all existing defense mecha-
nisms still follow the approach of “security through obscurity”,
in which security is achieved by keeping defenses obscured
from adversaries. To be clear, defenses following this approach
can mitigate the adversarial sample problem. However, when
applied to security critical applications such as malware clas-
sification, there are problems.

For a while, there has been a significant debate on security
through obscurity, and a general consensus has been reached.
This seems to be that obscurity is a perfectly valid security
tactic but it cannot be trusted for complete security. Once a
design or implementation is uncovered, users totally loose all
the security gained by obscurity. To regain the security through
obscurity, one has to devise a completely new design or
implementation. As such, Kerckhoffs’ principle [12] suggests
obscurity can be used as a layer of defense, but should never
be used as the only defense.

Inspired by this, we propose a new mechanism to improve
a DNN’s resistance to adversarial samples. Different from
existing defenses, our proposed approach does not need model
obscurity. In other words, even though we reveal the model,
it will still be more than burdensome for adversaries to craft
adversarial samples.

More specifically, we provide a standard DNN with a
data transformation module, which projects the original data
input into a new representation before it is passed through
a consecutive DNN. This can be used as a defense for the
following two reasons. First, the data transformation can stash
away the space of adversarial manipulations to a carefully



designed hyperspace. This makes it difficult for attackers to
find adversarial samples harmful for the newly modified DNN.
Second, as we will theoretically prove in Section IV, a data
transformation module carefully designed can exponentially
increase the computation complexity for an attacker to craft
adversarial samples. This means that even though an attacker
compromises obscurity and has the full knowledge about the
armed DNN model (i.e., the training algorithm, data trans-
formation module, dataset and hyper-parameters), an attack
still cannot be launched that is detrimental to DNNs enhanced
by other adversary-resistant techniques nor jeopardize model
resistance.

Our proposed approach is beneficial for three critical rea-
sons. First, it escalates a DNN’s resistance to adversarial
samples by having better security assurance. Second, our
approach ensures that a DNN maintains desirable classification
performance while requiring only minimal modification to
its existing architectures. Third, while this work is primarily
motivated by the need to safeguard DNN models used in
critical security applications, it should be noted that the
proposed technique is rather general and can be adopted to
other applications where deep learning is applied, such as
image recognition and sentiment analysis. We demonstrate this
applicability using publicly-available datasets in Section V.

In summary, this work makes the following contributions.
• We propose a generic approach to facilitate the develop-

ment of adversary-resistant DNNs without following the
tactic of security through obscurity.

• Using our approach, we develop an adversary-resistant
DNN, and theoretically prove its resistance cannot be
jeopardized even if the model is fully disclosed.

• We evaluate the classification performance and robustness
of our adversary-resistant DNN and compare it with
that of existing defense mechanisms. Our result shows
that our DNN exhibits similar – sometimes even better
– classification performance but with superior model
resistance to adversarial examples.

The rest of this paper is organized as follows. Section II in-
troduces the adversarial sample problem. Section III discusses
existing defense mechanisms and defines the problem scope
of our research. Section IV presents our generic approach. In
Section V, we develop and evaluate DNNs in the context of
image recognition, sentiment analysis and malware classifica-
tion. Finally, we conclude in Section VI.

II. SAMPLE ADVERSARIAL PROBLEM

An adversarial sample is a synthetic data sample crafted by
introducing slight perturbations to a legitimate input sample.
In multi-class classification tasks, such adversarial samples
can cause a DNN to classify themselves into a random class
other than the correct one (sometimes not even a reasonable
alternative). Recent research [5] demonstrates that attackers
can uncover such data samples through various approaches
(e.g., [1], [9], [14], [22], [24], [26], [29], [36]) which can
all be described as solving one of the following optimization
problems. It should be noticed that we design our defense

targeting the following attacks (optimization problems (1) and
(2)), so we do not include work that leverages generative
models to attack the target models (e.g., those that adopt a
generative adversarial network [34], [37]).

Consider the following:

x̂ = argmax
x̂

L(f(x̂;w); y),

s.t. ‖x̂− x‖p < ε,
(1)

or optimization problem

x̂ = argmin
x̂
L(f(x̂;w); ŷ),

s.t. ‖x̂− x‖p < ε and ŷ 6= y.
(2)

Where the f represents a neural network, ‖ · ‖p indicates
p norm and ε is the selected threshold. Here, optimization
problem (1) indicates that an attacker searches for an adver-
sarial sample x̂, the prediction of which is as far as its true
label, whereas optimization problem (2) indicates an attacker
searches for adversarial sample x̂ so that its prediction is as
close as target label ŷ where ŷ is not equal to y, the true label
of that adversarial sample.

In both optimization problems above, L(·) represents the
aforementioned cost function and f(·) denotes the DNN model
trained with the traditional learning method discussed above
. ‖·‖p is p-norm – sometimes also specified as lp distance –
indicating the dissimilarity between adversarial sample x̂ and
its corresponding legitimate data sample x. With different val-
ues of p – the most popularly selected variable in adversarial
learning research – the optimization problems above can be
computed in the following manner.

(1) With p = 2, p-norm represents the measure of Euclidean
distance. The constraint optimization problems above can
be specified as unconstrained optimization problems by
applying the KKT condition. Then, the unconstrained op-
timization problems can be solved by following either a
first-order optimization method (e.g., stochastic gradient
descent [5] and L-BFGS [29]) or a second-order method
(e.g., Newton-Raphson method).

(2) With p = 0, the p-norm indicates the number of elements in
a legitimate data sample that an attacker needs to manipulate
in order to turn it into an adversarial sample. Different
from the computation method above where the setting of
p = 0 makes the unconstrained optimization problems not
differentiable, the computation for the optimal solution has
to follow an approximation method previously introduced
by [5] or [22].

(3) With p = ∞, p-norm becomes a measure indicating
the maximum change to individual features. As such, the
optimal solution for (1) and (2) can be approximated by
following the fast gradient sign method [9], which computes
perturbation ∂L(f(x;w); y)/∂x (or ∂L(f(x;w); ŷ)/∂x),
multiplies it by distortion scale ε, and then adds the product
to the legitimate data sample x.
As is illustrated in the aforementioned optimization prob-

lems, in order to generate problematic adversarial samples, an



attacker needs to know either a standard DNN model f(·) or
know of a way to approximate f(·). A recent study [29] has
revealed that an attacker could well approximate a standard
DNN model using a traditional DNN training algorithm on
an auxiliary training dataset. In this paper, we use the “cross-
model approach” to refer to those adversarial sample crafting
methods that rely upon the approximation of a standard DNN
model.

III. EXISTING DEFENSES AND PROBLEM SCOPE

To counteract the adversarial learning problem described
in the section above, recent research invents various training
algorithms [3], [4], [7], [9], [17], [18], [21], [23], [28], [32],
[33], [35] to improve the robustness of a DNN model. They
indicate by using new training algorithms, one can improve a
DNN’s resistance to the adversarial samples crafted through
the aforementioned cross-model approach. This is due to the
fact that their training algorithms smooth a standard DNN’s
decision boundary, making adversarial samples – problematic
to standard DNN models – no longer sufficiently effective.
In this section, we summarize these defense mechanisms
and discuss their limitations. Following our summary and
discussion, we also define the problem scope of our research.

A. Existing Defense Mechanisms

Recently, research in hardening deep learning mainly fo-
cuses on two different tactics – data augmentation and model
complexity enhancement. Here, we summarize them and dis-
cuss their limitations.
Data augmentation. To resolve the issue of “blind spots”
(a more informal name given to adversarial samples), many
methods that could be considered as sophisticated forms of
data augmentation1 have been proposed (i.e. [7], [9], [17],
[21], [28], [32], [33]). In principle, these methods expand
their training set by combining known samples with potential
blind spots, the process of which has been called adversar-
ial training [9], [17], [21], [28], [33]. Technically speaking,
adversarial training can be formally described as adding a
regularization term known as DataGrad to a DNN’s training
loss function [21]. The regularization penalizes the directions
uncovered by adversarial perturbations (introduced in Sec-
tion II). Therefore, adversarial training can work to improve
the robustness of a standard DNN. Similar to adversarial
training, both the layer-wise Parseval regularization [7] and
random feature nullification [32] are new regularization terms
proposed to defend against adversarial attacks.
Model complexity enhancement. DNN models are already
complex with respect to both the nonlinear function that
they try to approximate as well as their layered composition
of many parameters. However, the underlying architecture
is straightforward when it comes to facilitating the flow of
information forwards and backwards, greatly alleviating the
effort in generating adversarial samples. Therefore, several

1Data augmentation refers to artificially expanding the datasets. In the case
of images, this also can involve deformations and transformations, such as
rotation and scaling, of original samples to create new variants.

ideas [3], [4], [18], [23], [35] have been proposed to enhance
the complexity of DNN models, aiming to improve the toler-
ance of complex DNN models with respect to adversarial sam-
ples generated from simple DNN models. For example, [23]
developed a defensive distillation mechanism, which trains
a DNN from data samples that are “distilled” from another
DNN. By using the knowledge transferred from the other
DNN, the learned DNN classifiers become less sensitive to
adversarial samples. Similarly, [3] integrated a dimensionality
reduction layer via Principal Component Analysis (PCA) be-
fore the DNN as a defense mechanism against evasion attacks.
[4] proposed a region-based classification approach, which
classifies a given testing sample by distributing information in
a hypercube centered at that sample. [18] equipped a DNN
with a detector and a reformer. With this design, a DNN
can detect the adversarial sample and change the detected
adversarial samples back to normal samples.
Limitation. While the aforementioned defenses have yielded
promising results in terms of increasing model resistance, as
is discussed in Section I, the scope of the model resistance
provided is relatively limited. Consider for example adversarial
training and defensive distillation [23]. Once an attacker ob-
tains the knowledge of the new algorithms, instead of using a
traditional DNN training algorithm to substitute the algorithm
which the target DNN is trained with, he can build his own
model with the new training algorithm, and then use it as the
cross model to facilitate the crafting of adversarial samples.
As we will show in Section V, the adversarial samples crafted
through such new cross models sustain their offensiveness to
the corresponding DNN models. Consider another example [3]
which uses an invertable data transformation PCA as the
defense layer. However, once an attacker is able to access
the training algorithm, he can generate adversarial samples
in the feature space of the PCA and then project these
adversarial samples back to input space. This indicates that
the effectiveness of existing defense mechanisms is highly
dependent upon the obscurity of training algorithms and model
parameters.

B. Problem Scope

With the existing defenses and their limitations in mind, we
define here the problem scope of our research.

Similar to most previous research, if not all for hardening
deep learning, we assume that an attacker crafts adversarial
samples by solving the aforementioned optimization problems
with derivative calculation (e.g., fast sign gradient descent or
Newton-Raphson). We believe this assumption is realistic for
the following reason.

Derivative calculation is the most general approach for
solving an optimization problem. In the future, while one
might be able to derive new forms of approaches in solving the
aforementioned optimization problem, one still has to ensure
the new approaches are computationally efficient. Without the
aid from derivative calculation, this can be relatively difficult.
Even if one could computationally efficiently resolve the
aforementioned optimization problems, for example perhaps
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Fig. 1: A deep neural network with a data transformation mod-
ule, projecting X , an input data sample, to new representation
g(X) prior to passing it through the DNN, f(·).

through relaxation, without derivative calculation, one still
needs to prove the adversarial samples derived from such an
approach are problematic. Given that relaxation reshapes an
optimization problem, the “optimal” solution may not even be
close to any local optima of that original optimization problem.

Different from prior research, we also assume that an
adversary has not only the access to a DNN’s structure as
well as the dataset(s) used to build the DNN, but more
importantly, the algorithm used to train the network. In other
words, we assume a target DNN model is no longer obscure
to an adversary and rather there exists full knowledge about a
DNN model that will be exploited. We believe this assumption
is more practical because there is little hope of keeping an
adversary-resistant training algorithm completely secret from
dedicated attackers. In the long run, any system for which the
security relies upon the obscurity of its design is at enormous
risk [12].

IV. OUR APPROACH

To address this problem, we propose a new approach to
harden DNN models. Technically speaking, it is basically
model complexity enhancement, which improves model resis-
tance by increasing model complexity. Different from the ex-
isting techniques mentioned above, our approach however goes
beyond the scope of robustness they provide. It ensures that an
attacker cannot perform the aforementioned attack to generate
adversarial samples problematic to our learning model even if
we reveal our training algorithm. In other words, our approach
enhances a DNN’s resistance to adversarial samples without
the requirement of obscuring training algorithms.

As is discussed in the previous section, the adversarial
learning problem can be viewed as an optimization problem.
To resolve that optimization problem, one needs to conduct an
analytical computation of gradients with respect to an input
data sample and perform backward propagation. Therefore,
we enhance a DNN’s robustness not only by increasing the
model complexity but, more importantly, restricting back-
propagation.

More specifically, we integrate with a DNN a data trans-
formation module, g(·) graphically indicated in Figure 1. As
is illustrated in the figure, the data transformation module
projects X , an input data sample to g(X), a new represen-
tation, before passing it through a consecutive DNN. This

transformation increases the complexity of a DNN model and
augments its resistance to adversarial samples crafted through
the aforementioned cross-model scheme. In addition, it blocks
the backward flows of gradients. With this block, even if the
underlying training algorithm is disclosed, an adversary cannot
craft adversarial samples. In the following, we specify the
design principle of our data transformation module, followed
by its design detail and some necessary discussions.

A. Design Principle
To block the backward flow of gradients, the design of

data transformation must satisfy three requirements. Most
notably, the data transformation must be non-differentiable.
As is discussed above, crafting adversarial samples requires
the calculation of gradients as well as the back-propagation
of those gradients. By making data transformation module
g(·) non-differentiable, we can make gradient calculation
intractable and thus obstruct the backward flow of gradients.
More formally, we can choose a non-differentiable function
g(x), making the derivative difficult to be calculated, i.e.,

∂nL(f(g(x̂);w); y)

∂x̂n
=
∂nL(f(g(x̂);w); y)

∂g(x̂)n
· ∂

ng(x̂)

∂x̂n
. (3)

Here, f(·) represents the DNN model in tandem with the data
transformation module, and L(·) denotes the cost function
described in Section II. The derivative can be computed using
either a first-order optimization method (e.g., gradient descent)
or a second-order method (e.g., Newton-Raphson method), in
which n is equal to 1 and 2 respectively.

While the non-differentiability feature restricts the crafting
of adversarial samples, an adversary might still be able to
generate adversarial samples. Since end-to-end gradient flow
is blocked at the input layer of the successive DNN, back-
propagation can only carry error gradients to the output of the
transformation module. Given g(·), an adversary could con-
struct an adversarial sample by inverting transformation mod-
ule g(·) and passing the manipulated transformation output
through the inversion of the transformation. More formally, the
adversary can construct an adversarial sample by computing

g−1(g(x̂) +
∂nL(f(g(x̂);w); y)

∂g(x̂)n
). (4)

In addition to making data transformation non-differentiable,
therefore, we must further ensure that the inversion of the data
transformation is computationally intractable. In other words,
the data transformation g(·) needs to have the property of non-
invertibility.

Satisfying the two requirements above ensures that our
proposed approach can prohibit an attacker from crafting
adversarial samples directly from the target DNN model, and
there is no need to be concerned about the disclosure of train-
ing algorithms. However, the data transformation proposed
may significantly jeopardize the accuracy of a DNN model
if not carefully designed. Consider the following extreme case
for example.

Hash functions like MD5 and SHA1 are one-way functions
which have the properties of non-differentiability as well as



non-invertibility. By simply using them as the transformation
module, we can easily prohibit an attacker from crafting
adversarial samples even if it is known which hash function
we choose and how we integrate it with the DNNs. However,
a hash function significantly changes the distribution of input
data samples. With it used, a DNN model suffers from sig-
nificant loss in classification performance. Last but not least,
our design must therefore ensure that the data transformation
preserves the distribution of the data representation. This can
potentially make a DNN robust without sacrificing classifica-
tion performance.

B. Design Detail

Following this design principle, we choose Locally Lin-
ear Embedding (LLE) [25], a non-parametric dimensionality
reduction mechanism, to serve as the data transformation
module. As we will discuss in the following, this repre-
sentative non-parametric method is non-differentiable. More
importantly, it can be theoretically proven that inverting a
LLE is an NP-hard problem. Last but not least, LLE seeks
a low-dimensional, neighborhood-preserving map of high-
dimensional input samples, and thus is a method that best
suited to preserving as much information in the input as
possible. In the following, we first describe LLE and then
expound upon the fact that, as a non-parametric dimensionality
reduction method, LLE is non-differentiable. Furthermore, we
theoretically prove LLE is computationally non-invertible.

1) Locally Linear Embedding: LLE is a non-parametric
method designed to reduce input data dimensionality and at the
same time preserve local properties of high-dimensional input
in a lower-dimensional space. To some extent, this can ensure
the distribution of high-dimensional data samples is as close as
they are in a lower-dimensional space. Technically speaking,
this is achieved by representing each high-dimensional data
sample via a linear combination of its nearest neighbors. More
formally, this can be expressed as xi =

∑N
j=1 wij · xj . Here,

xi and xj (xi, xj ∈ R1×m) denote the ith data sample and its
jth neighbor (j = 1, 2..., N ), respectively. wij represents the
weight, indicating the contribution of xj to data sample xi.
As is described in [25], those weights (a.k.a. reconstruction
weights) can be represented as a weight matrix W and
computed by solving the following optimization problem:

min
W

∑
i

∥∥xi −∑
j

wij · xj‖22

s.t.
∑
j

wij = 1.
(5)

In weight matrix W , LLE deems wij = 0 if xj is not consid-
ered as a neighbor of xi, and the total number of neighbors
assigned to xi is a carefully selected hyper-parameter. The
neighboring relation between xi and xj depends on the value
of the l2 distance between xi and xj .

Since the reconstruction weights encode the local properties
of the high-dimensional data, they can be used to preserve
the data distribution at the time we perform dimensionality
reduction. More specifically, LLE imposes the corresponding

reconstruction weights on each lower-dimensional data sample
via a similar linear combination, and then attempts to find
Y = {y1, y2, . . . , yN}, the lower-dimensional representation
of X = {x1, x2, . . . , xN} by solving the following optimiza-
tion problem:

min
Y

∑
i

∥∥yi −∑
j

wij · yj‖22

s.t.
∑
i

yi = 0 and
1

N

∑
i

yTi yi = I.
(6)

where yi, yj ∈ R1×mc , indicating yi, yj consist of mc of
elements.

In order to solve this optimization problem, the Rayleitz-
Ritz theorem [10] is typically used. It computes the eigen-
vectors corresponding to the smallest nonzero eigenvalues
of the inner matrix product (I − W )T · (I − W ). For a
detailed explication, please see Horn [10]. Here, I ∈ RN×N

is an identity matrix, and W ∈ RN×N is the aforementioned
reconstruction weight matrix.

LLE is specifically designed to retain the similarity between
pairs of high dimensional samples when they are mapped
to lower dimensions [25]. This property ensures that using
LLE as a data transformation module satisfies the last design
principle discussed in Section IV-A, preserving the distribution
of the original data. More importantly, this property also helps
bound the lower dimensional mapping of adversarial samples
to a vicinity which is filled by mappings of original test
samples that are very similar to these adversarial samples. As a
result, there is a significantly lower chance that an adversarial
sample acts as an outlier in the lower dimensional space. In
other words, LLE makes a DNN more resistant to adversarial
samples. In Section V, we empirically validate this important
property.

2) Non-differentiability of LLE: Existing dimensionality
reduction methods can be categorized as either parametric
or non-parametric [30]. Parametric methods utilize a fixed
amount of parameters to specify a direct mapping from high-
dimensional data samples to their low-dimensional projections
(or vice versa). This direct mapping is characterized by pa-
rameters, which are typically optimized to provide the best
mapping performance. This is similar to the functionality pro-
vided by a standard DNN, which maps high-dimensional data
samples to the final decision space through the differentiable
function f(·). As such, the derivative of parametric methods
typically can be computed in an analytically efficient manner.
In other words, parametric methods are generally differen-
tiable, and we argue this nature becomes a disadvantage for
blocking the backward gradient flow.

On the contrary, non-parametric methods do not suffer from
the issue above. For any non-parametric method, g(·), there is
no way to express it in a closed form. Therefore, the derivative
of g(·) can be computed only through a numeric not an
analytical approach. More formally, this means the calculation
of ∂g(x)/∂x needs to be completed through the calculation of
limit limh→0

g(x+h)−g(x)
h . Given that a deep neural network



takes as input each individual sample, which is discrete in
the sample space, it is difficult to define the continuity of
g(·) with traditional topologies and thus the differentiability
of g(·) cannot be guaranteed. This indicates, as a member
of non-parametric methods, that LLE well satisfies the first
design principle discussed in Section IV-A (i.e., not capable
of performing derivative calculation).

3) Non-invertibility of LLE: We validate the non-
invertibility of LLE by theoretically proving that recon-
structing original high-dimensional data from low-dimensional
representations transformed by LLE is computationally in-
tractable. More formally, we prove that, given a set of low-
dimensional data Y = {y1, y2, . . . , yN} (Y ∈ RN×mc ) pro-
duced by LLE, reconstructing their original high-dimensional
representations X = {x1, x2, . . . , xN} (X ∈ RN×m) from Y
is at least an NP-hard problem.

Recall that LLE computes weight matrix W and utilizes it to
project high-dimensional data samples to a lower-dimensional
space. As a result, to restore high-dimensional data from its
lower-dimensional representations, one has to recover that
matrix by following the calculation similar to that shown
in (5), except that xi and xj are replaced by yi and yj .

Once the weight matrix W is restored, the recovery of
original high-dimensional data can be viewed as solving the
following optimization problem:

min
X

∑
i

∥∥xi −∑
j

wij · xj
∥∥2
2
. (7)

It is not difficult to realize that Equation (7) can be defined in
the following quadratic form:

min
X

∑
i,j

mij · (xi · xj), (8)

where mij = δij−wij−wji +
∑

k wkiwkj . Note that δij = 1
if i = j and 0 otherwise. We can express mij as a symmetric
matrix M , where M ∈ RN×N .

Now, with the analysis above, the validation of non-
invertibility amounts to proving that solving (8) is at least
an NP-hard problem. In this work, we conduct this proof by
introducing several constraints to this equation. Our basic idea
is to use these constraints to relax the optimization problem in
(8) to a nearby problem which can be easily proved as an NP-
hard problem. More specifically, we introduce the following
constraints: ∑

i

xi = ~0, (9)

−1 ≤ xij ≤ 1,∀i ∈ N, j ∈ m, (10)

where ~0 denotes a zero vector, and xij represents the jth

element in vector xi.
With these constraints introduced into Equation 8, we can

relax the optimization problem to a quadratic problem with
a non-positive semi-definite constraint, which itself is a class
of NP-hard problems [8]. In the following, we provide more
details as to why the involvement of the aforementioned

constraints transforms the optimization problem in (8) to this
class of NP-hard problems.

Let A ∈ RNA×1 denote a column vector which is the
concatenation of xi for i = 1, . . . , N and NA = N×m. Then,
we have A = (x1, x2, · · · , xN )T. Let q ∈ R1×NA denote a
row vector in which every element is equal to 1. We further
define matrices P,Q ∈ RNA×NA as follows:

P =


P11 P12 · · · P1N

P21 P22 · · · P2N

...
...

...
PN1 PN2 · · · PNN

 , Q = −I, (11)

where Pij = mij · J . J ∈ Rm×m is a matrix of ones where
every element is equal to 1.

Given the constraint in (9), it is not difficult to discover∑
i x

T
i = ~0. Since the multiplication of a vector and its

transpose derives a non-negative value, we have Σixix
T
i ≥ 0

and the constraint in (9) can be expressed as inequation
−Σixix

T
i +

∑
i x

T
i +α ≤ 0, indicating there exists a positive

number, α that always holds the inequity. By rewriting the
inequation using the notations newly defined above, we can
therefore transform the constraint in (9) into the form of
ATQA+ qA+ α ≤ 0.

Given the constraint in (10), we can easily derive inequation
Σixix

T
i − NA ≤ 0, which can be further expressed as

Σixix
T
i −NA+γ ≤ 0 indicating there always exists a constant,

γ that holds the inequity. By rewriting both the constraint itself
and this inequation using newly defined notations, we can de-
rive constraints ‖A‖∞ ≤ 1 as well as ATIA−NA+γ ≤ 0. As
such, we can transform Equation (8) and the aforementioned
constraints in (9) and (10) into following form:

min ATPA

s.t. ATQA+ qA+ α ≤ 0.

ATIA−NA + γ ≤ 0, ‖A‖∞ ≤ 1.

(12)

Here, Q is negative semi-definite, and thus Equation (12) is a
quadratic problem with a non-positive semi-definite constraint.
According to [8], [31], Equation (12) belongs to a class of NP-
hard problems, which implies the non-invertability of LLE.

C. Discussion

Here, we discuss related issues and possible attacks against
our proposed technique.
Approximation of LLE. While the aforementioned discussion
and theoretical proof have already indicated the effectiveness
of our proposed approach, intuition suggests that an adver-
sary might still come up with an attack. Specifically, one
might approximate LLE using a parametric mapping and then
substitute LLE accordingly. Since parametric mappings do
not have the property of non-differentiability, the adversary
can take advantage of the substitute, pass gradients through,
and eventually craft adversarial samples. However, as we will
show in Section V, even using the state-of-art approximation
scheme, an adversary cannot craft problematic adversarial
samples.



Other dimensionality reduction methods. As is described
above, we choose LLE, a representative non-parametric dimen-
sionality reduction method, to serve as the data transformation
module. This is because that it has many properties needed
for hardening a DNN, such as non-differentiability, non-
invertibility, and the capability of preserving data distribution.

Going beyond LLE, there are other non-parametric di-
mensionality reduction methods that offer the similar prop-
erties, e.g., t-Distributed Stochastic Neighbor Embedding (t-
SNE) [16] and Sammon Mapping [27]. However, they cannot
be utilized in our problem domain for the following reason.

Deep neural networks exhibit superior performance when
dealing with data in a relatively high dimensionality. Other
non-parametric methods are typically designed more for tasks
like visualization [16] where it is required that the dimension-
ality of the mappings be two or three. Using them as our data
transformation module, they cannot provide high-dimensional
data input for the DNN in tandem with the transformation,
and may significantly jeopardize classification performance.

V. EVALUATION

As is described in Section I, adversarial training [9] and
defensive distillation [23] are the most representative tech-
niques that have been proposed to defend against adversarial
samples. Here, we use our proposed approach to train our
own adversary resistant DNN (LLE-DNN), and then compare
it with those enhanced by these two approaches. We believe
that our comparison is representative since it reflects two
generic approaches that most adversary-resistant deep learning
techniques commonly follow.

A. Dataset

We evaluate our adversary-resistant DNN model by per-
forming multiple experiments on several widely used datasets,
including a dataset for malware detection [2], the MNIST
dataset for image recognition [13] and the IMDB dataset for
sentiment analysis [15].
Malware dataset: This is a collection of window audit logs,
each of which ties to either a benign or malicious software
sample. The dimensionality of the feature-space for each sam-
ple is reduced to 10,000 based on the feature selection metric
in [2]. Each feature indicates the occurrence of either a single
filesystem access or a sequence of access events, thus taking
on the value of 0 or 1. Here, 0 indicates that the sequence
of events did not occur while 1 indicates the opposite. For
each software sample, it has been labeled with either 1 or 0,
indicating malicious and benign software, respectively. The
dataset is split into 26,078 training examples, with 14,399
benign and 11,679 malicious software samples, and 6,000
testing samples, with benign and malicious software samples
evenly divided.
MNIST dataset: This is a large dataset of handwritten digits
that is commonly used for training various image processing
systems. It is composed of 70,000 greyscale images (of 28×28,
or 784, pixels) of handwritten digits, split into a training set
of 60,000 samples and a testing set of 10,000 samples.

IMDB dataset: This dataset consists of 25,000 movie reviews,
with one half labeled as “positive” and the other “negative”,
indicating the sentiment of these reviews. We randomly split
the dataset with 70% movie reviews for training and the
remaining for testing. Following the procedure introduced
in [19], we encoded the words in each movie review using a
dictionary carrying 5,000 words most frequently used. Then,
we utilized a word embedding technique [19] to convert each
word into a vector with a dimensionality of 600. For each
movie review, we linearly combined the vectors indicating the
words appearing in that review, and then treat the embedding
as the representation of that movie review.

B. Experimental Design

For each application described above, we train 4 DNN
models using the traditional deep learning training method,
adversarial training [9], defensive distillation [23] and our
own approach2 We measure their classification accuracy by
applying the models to the corresponding testing datasets. By
comparing their classification performance, we evaluate the
influence that our proposed approach brings to a DNN. More
specifically, we examine if LLE-DNN exhibits similar, if not
the same or better, classification accuracy.

Since the goal of this work is to improve the robustness of
a DNN model, we also evaluate our DNN models’ resistance
to adversarial samples3. In particular, we derive adversarial
samples from the aforementioned testing datasets, test them
against our DNN model and compare its model resistance with
those of DNNs enhanced by the other two techniques [9], [23].

As is discussed in Section II, an attacker crafts adversarial
samples through auxiliary models. In Table II, black-box
and white-box indicate the auxiliary models trained through
different schemes. More specifically, black-box represents the
auxiliary model trained through the standard deep learning
training scheme, indicating an attacker does not have sufficient
knowledge about the underlying training algorithm and he can
use only a standard approach to train a cross model and craft
adversarial samples. White-box represents the auxiliary model
trained exactly through the learning schemes proposed as a
defense. This simulates a situation where a defense mechanism
is publicly disclosed and an attacker exploits that mechanism
to produce a highly similar – if not the same – model
to craft adversarial samples. Note that, for both black-box
and white-box tactics, we use the same hyperparameters and
training dataset to build auxiliary models. More specifically,
our auxiliary model training shares the same hyperparameters
and training dataset with the standard DNN shown in Table I.

In addition to the methods described in Section II, the craft-
ing of adversarial samples must ensure a slight perturbation
introduced to a data sample in order to not undermine its
semantics. In other words, we must make sure that, while

2Note that for each dataset, we ensure that 4 techniques share the same
DNN architecture and specify the hyperparameters of these DNNs in Table I.

3As is introduced in Section II, there exists three different attacks: l2, l0,
l∞. Note that in this paper, we use attack methods in [5] for l2 and l0 attack,
and choose fast gradient sign [9] for l∞ attack



TABLE I: Hyperparameters of all the investigated DNN models.

Hyper ParametersTraining
Algorithms Datasets DNN Structure Activation Optimizer Learning Rate Dropout Batch Epoch

MNIST 784-500-300-100 Sigmoid Adam 0.001 - 100 70
Malware 3738-3000-1000-100-2 Relu Adam 0.001 0.25 500 20Standard

DNN IMDB 600-200-200-100-2 Tanh Adam 0.001 0.5 100 40
MNIST 784-100-100-100-10 Tanh SGD 0.1 0.25 100 60
Malware 3738-3000-1000-100-2 Relu Adam 0.001 0.25 500 20Adversarial

Training IMDB 600-300-100-50-2 Sigmoid Adam 0.001 0.2 100 100
MNIST 784-200-50-20-10 Tanh SGD 0.1 0.25 100 100
Malware 3738-3000-100-20-2 Relu SGD 0.1 0.25 100 20Distillation

(T=20) IMDB 600-100-100-50-2 Sigmoid SGD 0.1 0.2 100 50
MNIST 200-200-100-10 Relu Adam 0.001 0.5 100 50
Malware 1000-500-200-100-2 Relu Adam 0.001 0.5 100 50LLE-DNN
IMDB 500-300-200-100-2 Tanh Adam 0.001 0.5 100 100

TABLE II: Comparison of model resistance to adversarial samples crafted in different manners. The values in the table represent
the classification accuracy that DNN models exhibit when classifying adversarial samples.

Learning
Technology

Black Box White Box
MNIST MALWARE IMDB MNIST MALWARE IMDB

l∞ l2 l0 l0 l∞ l2 l∞ l2 l0 l0 l∞ l2
Standard DNN 6.86% 6.40% 7.50% 26.19% 28.10% 29.56% 6.86% 6.40% 7.50% 26.19% 28.10% 29.56%

Distillation 87.06% 96.22% 47.36% 79.93% 82.65% 87.31% 34.43% 12.60% 8.43% 40.47% 48.98% 49.12%
Adv. Training 89.09% 96.23% 84.33% 96.70% 87.43% 87.66% 33.94% 14.44% 8.89% 43.09% 50.78% 51.0%

LLE-DNN 95.25% 96.59% 86.12% 95.02% 87.58% 87.69% 97.02% 97.45% 87.49% 94.66% 87.47% 87.53%

misleading a classifier to output the wrong class with high
confidence, the perturbation to an input image should be nearly
indistinguishable to the human eye, Also, a malicious software
sample should not jeopardize software functionality nor break
its malevolence, and for a movie review it should not break its
semantic meaning. In the following, we describe how we fine-
tune adversarial samples to preserve semantics for different
applications.
Malware classification. Recall that our malware samples
are represented by features, the value of which are binary,
indicating the occurrence of an filesystem access or a sequence
of access events. When generating adversarial samples, we
cannot simply disable filesystem access events since this might
jeopardize the functionality of the software sample and even
break down its malevolence. With this in mind, some care
must be taken.

In this work, our experiment follows the approach in-
troduced in Section II. To be specific, we craft adversarial
software samples with the setting of zero norm (i.e., l0). This
indicates that the manipulation to a sample is restricted to
flipping binary feature values. Going beyond the adversarial
sample crafting approach discussed in Section II, we also
restrict that the value change of a feature can be only from 0 to
1 but not the opposite. This amounts to allowing the addition of
new filesystem access events only. This manipulation strategy
is reasonable since malware mutation techniques (e.g., [20])
can morph a malware sample by stitching together instructions
from benign programs, making the malware perform additional
filesystem accesses but not undermining its maliciousness nor
its functionality. Since malware manipulation is done with the
intent of fooling a malware classifier driven by a DNN, it
should be noticed that we do not morph a benign software
sample, making it malicious.
Image recognition. Image data samples contain less strict
semantics than the malware data samples above. To preserve

image semantics, making a perturbation nearly indistinguish-
able, we follow the approaches introduced in [5], [9], [29].
More specifically, we selected l0, l2 and l∞ distance to repre-
sent the dissimilarity between an image and its corresponding
adversarial sample. Especially, we restrict the l∞ distance in a
relative small range (i.e., ε ≤ 0.15) when crafting adversarial
samples.
Sentiment Analysis. To generate adversarial samples for
movie reviews, we again followed the approach introduced
in Section II. To be specific, we configured p-norm with the
setting to l2 and l∞. This is due to the fact that each review
is encoded in a vector in which each element is a decimal,
and l2 and l∞ distances represent the best measure for the
dissimilarity between a movie review and its corresponding
adversarial sample.

As is mentioned above, each vocabulary has been encoded
in a vector with a dimensionality of 600, and we embedded
a movie review by linearly combining corresponding vectors.
When generating an adversarial sample by introducing a slight
perturbation to the embedding, we recast the perturbation to
only one vector. This ensures that we introduce only one word
change to that review with the hope that it preserves the se-
mantic meaning of that review as much as possible. However,
one word change does not guarantee the invariance of the
semantic meaning. For example, it would be obvious alteration
to the semantic meaning if the replacement happens to be the
negative word in “... makes it the biggest disappointment I’ve
experienced from cinema in years ...”. As such, we manually
try to choose the word that incurs minimal semantic change
to that movie review.

C. Experimental Setup and Results

On the datasets described above, we first measure the
accuracy of all the aforementioned defense techniques. We



(a) MNIST. (b) Malware. (c) IMDB.

Fig. 2: Variation of classification accuracy vs. the dimensionality of data mappings.

then measure their resistance to the adversarial samples crafted
through the aforementioned tactics.

TABLE III: Classification accuracy on different datasets.
Learning technology Accuracy

MNIST MALWARE IMDB
Standard DNN 98.45% 92.97% 87.89%

Distillation 98.46% 92.45% 87.36%
Adv. training 98.77% 91.48% 87.67%

LLE-DNN 98.19% 93.56% 87.79%

1) Classification Accuracy: To identify the optimal dimen-
sionality to which LLE needs to map original data samples,
we implemented several LLE-DNNs with different dimension-
ality settings of LLE mappings. Figure 2 shows the impact
of dimensionality mapping upon the classification accuracy
obtained by LLE-DNN. Across all three datasets, it we observe
that the accuracy first increases when the dimensionality of
the LLE mappings rises and then starts to decrease. In our
experiments, we choose the highest classification accuracy to
represent the performance of our LLE-DNN.

Table III presents the classification accuracy results obtained
from all investigated DNNs for the testing datasets. Note that
while prior work (e.g, [6]) has already demonstrated that a
DNN can be trained with an error rate less than 1% on
the MNIST benchmark, their performance improvement does
not result from a DNN but from model ensembles or elastic
distortions added to the training data. To study the influence
of our proposed approach upon a standard DNN, we did
not combine models nor augment with artificially distorted
versions of the original training samples. The classification
accuracy shown in the table has already represented the best
performance that a standard DNN can achieve.

Similar to adversarial training and defensive distillation,
the LLE-DNN is quite effective in preserving classification
accuracy. This implies our proposed approach well preserves
data sample distribution. For the malware classification task,
it can be observed that LLE-DNN appears to be better at
feature learning, achieving the highest classification accuracy
among DNNs that we investigated. This is presumably due
to the fact that malware data samples are highly sparse
carrying a large amount of redundant information, and the
data transformation module in LLE-DNN eliminates those
redundancy and ameliorates the learning ability of a DNN.

2) Model Resistance: Table II illustrates the DNNs that we
investigated as well as their accuracy in classifying adversarial
samples. It can be observed that black-box adversarial samples
can cut down the accuracy of the standard DNN to 6.86%,

6.40% and 7.50% under the attacks of l∞, l2 and l0, respec-
tively. In contrast, all of the defense mechanisms investigated
demonstrate strong resistance to these black-box adversarial
samples. This indicates, without sufficient knowledge on the
underlying defense mechanisms, that it is difficult for an
attacker to craft problematic adversarial samples. In other
words, existing defense mechanisms can significantly enhance
a DNN’s resistance to adversarial samples if one can obscure
the design of the defenses.

Despite the improvement in model robustness, we also
observe that our LLE-DNN generally exhibits the best resis-
tance to black-box adversarial samples, whereas the defensive
distillation approach typically yields the least resistance. This
is presumably due to the fact that the dimensionality reduction
residing in LLE-DNN transforms adversarial samples into a
subspace which no longer acts as outliers, while defensive
distillation smooths only a classification decision boundary
which does not significantly reduce the subspace of adversarial
samples.

With regard to the white-box setting, we discover both
adversarial training and defensive distillation suffer from these
adversarial samples. Their resistance to white-box adversarial
samples is significantly worse than those created under the
black-box. This observation is consistent with that reported
in [5]. The reason is that both techniques stash away the
adversarial sample subspace, but the disclosure of defense
mechanisms uncovers the paths in finding that subspace.

Different from adversarial training and defensive distilla-
tion, our LLE-DNN is naturally resistant to white-box adver-
sarial samples. As is discussed in Section IV, our proposed
approach stashes away the adversarial sample subspace and
at the same time restricts derivative calculation. Even if our
defense mechanism is revealed, therefore, it is still computa-
tionally difficult to find adversarial samples.

To perform quantitative comparison with the other two
approaches, however, we approximate the data transformation
in the LLE-DNN – non-parametric dimensionality reduction
component – using a parametric model. To be specific, we
choose a DNN to approximate LLE in that a DNN has a large
amount of parameters which is typically viewed as the best
approximation for non-parametric learning models [11]. With
the support from this approximation, we treated the LLE-DNN
as a white box and generated adversarial samples accordingly.
We show its model resistance in Table II. It can be observed
that our LLE-DNN still demonstrates strong resistance to
white-box adversarial samples even if we substituted LLE to



its best approximation. This implies that there might be a
theoretical lower bound between a non-parametric model and
its parametric approximation, which could naturally serve as
a defense against white-box adversarial samples.

VI. CONCLUSION

It is well known that DNNs are vulnerable to adversarial
samples. Existing defenses improve a DNN’s resistance to
adversarial samples by using the tactic of security through
obscurity. Once the design of the defense is disclosed, the
robustness they provide decreases. Motivated by this, this work
introduces a new approach to increase the robustness of a
DNN model by using a DNN model LLE, a non-parametric
dimensionality reduction method. With this approach, we show
that one can develop a DNN model resistant to adversarial
samples even if its design details (i.e., the underlying training
algorithm) are known. By demonstrating the performance of
our enhanced DNNs across various applications, we argue that
our proposed approach introduces nearly no degradation in
classification performance. And for some applications, it even
exhibits performance improvement. Future work will explore
our approach on a wider variety of applications.
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