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Abstract—A trojan backdoor is a hidden pattern typically
implanted in a deep neural network (DNN). It could be activated
and thus forces that infected model to behave abnormally when
an input sample with a particular trigger is fed to that model.
As such, given a DNN and clean input samples, it is challenging
to inspect and determine the existence of a trojan backdoor.
Recently, researchers design and develop several pioneering
solutions to address this problem. They demonstrate that the
proposed techniques have great potential in trojan detection.
However, we show that none of these existing techniques com-
pletely address the problem. On the one hand, they mostly work
under an unrealistic assumption of assuming the availability of
the contaminated training database. On the other hand, these
techniques can neither accurately detect the existence of trojan
backdoors, nor restore high-fidelity triggers, especially when
infected models are trained with high-dimensional data, and the
triggers pertaining to the trojan vary in size, shape, and position.

In this work, we propose TABOR, a new trojan detection
technique. Conceptually, it formalizes the detection of a trojan
backdoor as solving an optimization objective function. Different
from the existing technique which also models trojan detection
as an optimization problem, TABOR first designs a new objective
function that could guide optimization to identify a trojan
backdoor more correctly and accurately. Second, TABOR borrows
the idea of interpretable AI to further prune the restored triggers.
Last, TABOR designs a new anomaly detection method, which
could not only facilitate the identification of intentionally injected
triggers but also filter out false alarms (i.e., triggers detected
from an uninfected model). We train 112 DNNs on five datasets
and infect these models with two existing trojan attacks. We
evaluate TABOR by using these infected models, and demonstrate
that TABOR has much better performance in trigger restoration,
trojan detection, and elimination than Neural Cleanse, the
state-of-the-art trojan detection technique.

I. INTRODUCTION

We have witnessed that deep neural networks (DNNs) have
delivered super-human accuracy in a variety of practical use
cases, such as facial recognition [27] and object detection [25].
Along with the huge success of deep learning also comes
many kinds of adversarial attacks [1], [14], among which trojan
attack [13], [21] is a relatively novel one. Technically, this kind
of attack inserts contaminated data samples into the training
data of a DNN, seeking to trick the system into learning a
trojan backdoor through which an adversary could mislead the
system to misclassification for arbitrary inputs with a trigger
present.

Recently, researchers have proposed several new techniques
to inspect the existence of a trojan backdoor in a target learning
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model (e.g., [30]). As we will specify in Section §III, these
works are mostly designed under the assumption of having
access to the training database. For the following reasons,
such an assumption however is not quite practical. First, a
user may not be involved in the training process of an AI
system but acquire an AI system from vendors or open model
repositories that are malicious, compromised or incompetent.
Second, even if a user is engaged in the process of an AI system
development, she may obtain a learning model by performing
a transfer learning, which may take an existing, untrustworthy
AI system as a base model.

To the best of our knowledge, Neural Cleanse [30]
and DeepInspect [4] are the most recent – if not the only
two – research works that can perform trojan backdoor
inspection without the aforementioned assumption. Because
DeepInspect’s objective function and anomaly detection
are exactly the same as Neural Cleanse, we will only
refer to Neural Cleanse in the rest of the paper for
brevity. Technically speaking, Neural Cleanse defines an
objective function and formalizes trojan detection as a non-
convex optimization problem. With such a design, resolving
the optimization can be viewed as searching special adver-
sarial samples (i.e., input samples with a trigger attached) in
an adversarial subspace defined by that objective function.
In [30], Neural Cleanse demonstrates decent performance
in pointing out the existence of a trojan backdoor. However,
as we will show in Section §V, Neural Cleanse becomes
completely futile, especially when an infected model is trained
to deal with high-dimensional data or it ingests a trigger with
varying size/shape/location. We conjecture this is because both
the high-dimensional and the trigger properties significantly
vary the number of adversarial samples in the adversarial
subspace, which forces the aforementioned adversarial sample
search into encountering more adversarial samples that are
not the true interest. In the design of Neural Cleanse,
Wang et al. utilized a simple outlier detection algorithm to
distinguish identified adversarial samples from the special
ones. As we will show in Section §V, with more adversarial
samples fed into this algorithm, it inevitably demonstrates
the difficulty in distinguishing the special adversarial samples
from other adversarial ones. In addition, we discover that
Neural Cleanse has limited capability in restoring high-
fidelity triggers. As we will demonstrate in Section §V, this
jeopardizes our ability to patch a trojan-implanted model.

Inspired by the finding and the analysis above, we propose



TABOR, a new trojan detection approach. Similar to Neural
Cleanse, it also formulates trojan detection as an optimization
problem and thus views the detection as searching trigger-
inserted inputs in an adversarial subspace. However, differently,
TABOR tackles the aforementioned detection failure and low-
fidelity issues from three new perspectives. First, it designs
new regularization terms for an objective function by following
some of the heuristics established from our observations. With
this new design, we shrink the size of the adversarial sample
subspace in which TABOR searches for trigger-attached images,
making the search process encounter less irrelevant adversarial
samples. Second, TABOR leverages the idea of explainable
AI to further prune irrelevant adversarial samples, and thus
minimizes incorrect trojan detection. Last but not least, TABOR
invents a new anomaly detection method, which can better
distinguish the intentionally injected triggers from adversarial
triggers in an infected model and eliminate the adversarial
samples mistakenly pinpointed as malicious triggers (i.e., false
alarms) in a clean model. As we will discuss and demonstrate
in Section §IV and §V, our anomaly detection can work as a
standalone method and, even by using it along with Neural
Cleanse, it could significantly improve its capability in trojan
backdoor detection.

In this work, we do not claim TABOR is the first system
designed for trojan inspection and elimination. However, we
argue this is the first work that demonstrates the new challenges
of backdoor detection and tackles these new challenges through
a series of new technical solutions. Using 112 DNN models
trained on different datasets as well as the various ways to insert
trojan backdoors, we show that TABOR typically has much
better performance in trojan detection and trigger restoration
than the state-of-the-art technique Neural Cleanse. With
the facilitation of TABOR in trojan detection as well as trigger
restoration, we can establish a system that can accurately
inspect the safety of a target learning model and automatically
patch that model accordingly.

II. BACKGROUND & PROBLEM SCOPE

In this section, we first introduce the background of trojan
backdoors. Then, we describe our problem scope as well as
the threat model. Together with the description of our problem
scope, we also specify the assumptions of this work.

A. Trojan Backdoor

An infected DNN with a trojan backdoor implanted can
misclassify a trigger-inserted input into a designated class
(i.e., target class). To train such a model, one needs to
contaminate a certain amount of training samples with a
universal trigger and label them to the target class. Take the
traffic sign recognition for example. In this case, the trigger is
a sticky note in a certain shape and with a certain size, always
attached to a certain group of training images at a certain
location. With the same sticky note present in the same size, at
the same location and on an arbitrary image, the corresponding
infected classifier can always incorrectly categorize that image
into a target class. These trigger-implanted images are a special

kind of adversarial samples because it utilizes a universal
perturbation to mislead an infected neural network model. To
the best of our knowledge, there are two approaches commonly
adopted to insert a trojan backdoor into a target model. In the
following, we briefly introduce these two approaches.

BadNet. The most common approach to inject a trojan
backdoor is BadNet [13]. Technically speaking, it randomly
picks a subset of training samples from the training dataset,
implants a trojan into these images and labels them with
the target class. Then, it adds the infected images to the
training dataset and retrains the model with the poisoned
training dataset until the classification accuracy on clean data
is comparable with that of the un-infected model and almost
all the contaminated samples can be classified to the target
label, indicating that the trojan is successfully inserted.

Trojan Attack. Recent research proposes an alternative
method, Trojan Attack [21], to implant a trojan backdoor into a
target model. Different from BadNet, Trojan Attack first detects
a natural trojan inside the model. Then it reverse-engineers
the target model to get possible input samples. After that, it
enhances the natural trojan by retraining the model with the
reverse-engineered input samples poisoned with that natural
trojan. The trojan injected by Trojan Attack is usually much
more complicated than BadNet. Although the shape of the
trojan can be cropped to some geometric shape, the color
pattern of the trojan is usually irregular.

B. Problem Scope

Our setting involves two parties – ¶ a user, who wants to get
a DNN to perform her classification task, and · a malicious
model developer, to whom the user outsources the training job,
or from whom the user downloads a pre-trained DNN.

From the perspective of a malicious developer, after receiving
a task from end-users, he can make arbitrary modifications to
the training procedure such as poisoning the training set [5],
or biasing a pre-trained model [13]. With these malicious
manipulations, he expects to obtain a trojan-implanted DNN,
which (1) has almost the same accuracy as a clean model
carrying no backdoor, and (2) always misclassifies that sample
to a target class when the corresponding trigger is present in
an input. From the perspective of an end-user, she receives
a learning model from a malicious developer and needs to
(1) determine whether or not that learning model encloses a
trojan backdoor intentionally inserted and (2) restore the trigger
pertaining to the backdoor and then patching the victim models
with these restored triggers. In this work, we assume that the
end-user does not have access to the contaminated training
dataset (i.e., images with trigger inserted) but a corpus of clean
training and testing data samples. In addition, we assume that
the end-user does not know which attack malicious model
developers used to implant a trojan backdoor into the model –
if implanted – nor has the clue about at which class the trojan
targets.



III. EXISTING RESEARCH AND LIMITATIONS

Recently, there are some research efforts on defending against
trojan in AI systems. Technically, the works in this area can
be categorized into three directions – (1) trigger detection that
focuses on recognizing the presence of the trigger given an
input sample, (2) trojan detection that focuses on determining,
given a target model, whether it is trained with a backdoor
inserted and (3) trojan elimination that focuses on offsetting
the influence of a trojan backdoor upon the classification of
a DNN. Our technique mainly falls into the category of (2).
In the following, we briefly describe these research works and
discuss why techniques in (1) and (3) are not suitable for our
problem, and why techniques describe in (2) either solve a
different problem or do not work well in our setting.

Trigger Detection. To mitigate the impact of a trojan backdoor
upon an infected learning model, pioneering research [22] uti-
lizes anomaly detection to identify the data input that contains
a trigger. Ma et al. [23] propose to detect an input with the
trigger by comparing the neurons’ activation pattern of the
clean inputs and the contaminated inputs. Gao et al. introduce
STRIP [9], a detection system that examines the prediction
variation and thus pinpoints the input data samples with the
presence of the malicious trigger. Similarly, Chou et al. propose
SentiNet [6], a different technical approach to detect the
presence of the trigger in a target input sample. Technically,
SentiNet first employs an explainable AI approach [24] to
highlight the features attributive to a classification result.
Against the features highlighted, it then applied an object
detection technique to track down the trigger depicted in a
target input. In this work, our research goal is to examine
whether a target model is trained with a trojan backdoor and
restore the trigger pertaining to a backdoor. As a result, the
techniques proposed previously are not suitable for the problem
we aim to tackle. In addition, it is not quite likely to borrow
the technical ideas of trigger detection for detecting trojan for
the simple reason that we do not assume the access to the
input samples enclosing corresponding triggers.

Trojan Detection. The most relevant works to our design are
trojan detection techniques. Briefly speaking, trojan detection
techniques aim to determine whether a target learning model
is infected with a trojan backdoor. In [3], Chen et al. utilize
contaminated training data to query the learning model. They
apply clustering algorithms to the hidden layer activations
to determine whether the model is infected or not. While
Chen et al. ’s method demonstrates the effectiveness in detect-
ing trojan backdoors, it assumes the access to the contami-
nated training data as well as the internal weights. In [20],
Liu et al. propose another trigger restoration technique which
does not rely on contaminated training data but still assumes
the access to the hidden layer outputs. Another limitation of
this work is that it lacks efficient anomaly detection method to
determine the existence of trojan backdoor and the target label.
Wang et al. [30] propose the first end-to-end trojan detection
technique without the above assumptions. They model the trojan
restoration as an optimization task and restore the potential

triggers for all labels. Then they leverage MAD outlier detection
method to distinguish the correct trigger. Following [30]’s idea
(i.e., using the same objective function and anomaly detection
method), Chen et al. [4] further borrow the idea of Generative
Adversarial Network [11] to generate the trigger. However, as
we show in Section §V, the objective function in [30], [4]
cannot restore high-fidelity triggers and the anomaly detection
method employed in [30], [4] typically incurs unaffordable
false identification rate

Trojan Elimination. Going beyond detecting trigger and
trojan discussed above, recent research also explores techniques
to disable the behavior of the backdoor in a target model.
Technically speaking, the researches in this category mainly
focus on three kinds of methods – (1) eliminating contaminated
training data and retraining learning models (e.g., [2], [18],
[26]); (2) trimming malicious neurons and re-calibrating the
corresponding network (e.g., [19]) as well as (3) restoring
a trigger from an infected model and patch the model with
that trigger (i.e., [30], [4]). For the first method, the state-
of-the-art technique [29] utilizes a new statistical method to
examine training data and thus tracks down the training data
potentially contaminated for inserting a trojan. Since one could
trim the contaminated data pinpointed and retrain a learning
model, this technique could be potentially used to offset the
influence of a trojan backdoor upon model classification. For
the second method, representative work is fine-pruning [19].
Technically speaking, it first exercises a target neural network
with a large corpus of clean data samples. By observing the
activation of each neuron, it then cuts off the dormant neurons
(i.e., those inactive in the presence of a clean input) and locally
retrains the corresponding neural networks to offset the impact
of the backdoor upon model classification. Different from the
former two methods, the third method [30], [4] assumes that
the defender cannot access the infected training data and only
have clean testing data. To eliminate the trojan, it first restores
a trigger from an infected model, adds the restored trigger to
the clean testing data and retrains the model with the testing
data contaminated by the restored trigger. In this work, we also
follow this approach to patch an infected model, and as we
will show later in Section §V, restoring a high-fidelity trigger
will help improve the patching performance

IV. KEY TECHNIQUE

As is discussed in Neural Cleanse [30], given a victim
model, restoring an injected trigger can be viewed as solving
the following optimization:

argmin∆,ML(f(xt), yt) ,xt = x� (1−M) + ∆�M . (1)

Here, M and ∆ are a mask and a pattern, respectively. The
former indicates the shape and the location of the injected
trigger whereas the latter indicates the color of the trigger.
When multiplied together (i.e., M�∆), they denote the trigger
restored. In the equation above, x ∈ Rd×d is a testing sample
in the matrix form 1 and xt denotes the testing sample x with

1x ∈ Rd×d×3 for colored images.



the trigger ∆�M inserted. yt represents a specific target class,
into which the model f(·) misclassifies xt. The loss function
L(f(xt), yt) indicates the similarity between the prediction
f(xt) and the target class yt.

If a model is clean, or infected with the capability of
misclassifying xt to a target class T , ideally, given the model
f(·) and non-target class (i.e., yt 6= T ), one should not obtain
a solution for ∆ and M from the optimization above, and
conclude the model f(·) carries no trojan or contains no
backdoors that can misclassify a trigger-inserted image into
the class yt 6= T . However, for any given value of yt and a
deep neural network model f(·), by resolving the optimization
above, one can always obtain a solution (i.e., a local optimum)
for ∆ and M simply because of the non-convex property of
DNNs [10], [15]. For a clean model f(·), the local optimum
indicates a false alarm but not a trigger pertaining to an
intentionally-inserted trojan backdoor. For a victim model
f(·), the local optimum may represent the trigger intentionally
inserted or an incorrect trigger (i.e., an unintentionally-inserted
trigger tied to a non-target class or a trigger tied to the target
class but with nearly no overlaps with the trigger intentionally
inserted).

As is mentioned in Section §II-B, a model user aims to
¶ point out whether a model truly carries a trojan backdoor
intentionally implanted and · if an intentionally inserted trojan
exists, restore the corresponding trigger and patch the victim
model under the guidance of the restored trigger. To achieve
the goals above, a trojan detection and mitigation technique,
therefore, has to filter out the false alarms as well as incorrect
triggers (to correctly detect the existence of a trojan backdoor)
and restore the intentionally injected triggers with high fidelity
(to obtain a stronger capability in patching a model). In this
work, we tackle this issue by designing and developing TABOR.
To be specific, we first study the triggers resolved by Neural
Cleanse, characterizing the correct triggers (i.e., the one
pertaining to that intentionally inserted) as well as adversarial
triggers (i.e., the false alarms and incorrect triggers mistakenly
identified). Under the guidance of their characteristics, we
then design an objective function to reduce the number of
adversarial triggers. Following the idea of explainable AI,
we introduce a pruning process which further minimizes the
number of adversarial triggers. Finally, we design a novel
anomaly detection method to distinguish the correct triggers
from the adversarial ones. In the rest of this section, we first
describe our study and trigger characteristics. Then, we specify
the design of our new objective function and the pruning
process. Finally, we present our anomaly detection and trojan
elimination methods.

A. Characterization

We trained clean classifiers and infected classifiers using
five public dataset introduced in Section V and detected trojan
backdoors for both models by solving Equation (1). Through
this setup, we collected various triggers resolved. These include
the correct trigger tied to the trojan intentionally inserted,
and as well as adversarial ones (i.e., the false alarms and

incorrect triggers). In the following, we analyze these triggers
and summarize their characteristics.

Characteristic I: Overly Large. By observing adversarial
triggers, we first discover that their presentations are overly
large. In addition, we observe that they typically do not have
overlaps with the trigger pertaining to the inserted trojan. By
inserting any of adversarial triggers into a set of clean images,
we observe some of the trigger-inserted images could trick
the corresponding model into yielding incorrect classification
results. This implies that, the images tied to misclassification are
adversarial samples, and both incorrect triggers and false alarms
are triggers pertaining to trojan backdoors naturally existing. In
addition, we also found that most of these overly large triggers
cannot reach the attack success rate of the intentionally injected
triggers.

Characteristic II: Overlaying. As is mentioned above, we
also gathered the resolved trigger pertaining to the trojan
intentionally inserted. By observing that resolved trigger, we
surprisingly discover that it overlays the trigger intentionally
inserted but presents itself in a larger size. With respect to
the task of detecting the existence of a trojan backdoor, this
resolved trigger indicates the correct detection of a trojan
backdoor. Regarding the task of restoring a trigger, however,
this resolved trigger implies a restoration with a relatively low
fidelity because it does not perfectly overlap the real trigger
tied to the inserted trojan.

B. Objective Function & Pruning Process

In this paper, we design our trigger restoration technique in
response to these Characteristics. To be specific, we propose to
remove the adversarial triggers mentioned above by introducing
regularization terms to the objective function Equation (1) under
the guidance of the characteristics I. In addition, we design a
trigger pruning process under the guidance of Characteristic II.

1) Regularization Term for Overly Large Triggers. : As is
mentioned above, the key characteristic of adversarial triggers
is their overly-large sizes. Therefore, when resolving the
aforementioned optimization, we can introduce one regular-
ization terms to penalize the resolved triggers overly large.
Technically speaking, penalizing the triggers overly large can
be interpreted as restricting the number of non-zero elements in
M. Specifically, we define the regularization term as follows:

R(M,∆) = λ1 ·Relastic(vec(M)) + λ2 ·Relastic(vec(∆′)) .

∆′ = (1−M)�∆ .
(2)

Here, vec(·) denotes converting a matrix into a vector. Relastic(·)
represents imposing an elastic-net [32] (the sum of L1 and L2

norms) to a vector, λ1 and λ2 are hyperparameters indicating
the weights assigned to corresponding terms. As we can observe
in this equation, M represents the mask of a trigger and ∆′

represents the color pattern outside the region of that trigger. By
imposing an elastic-net on both of these terms and then adding
them together, we can obtain a measure indicating the total
amount of non-zero elements in M and ∆′. For an overly large
trigger, the value of R1(M,∆) should be large. Therefore, by
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Fig. 1: The illustration of knocking off irrelevant features that are part of identified trojan backdoor. Note that the red box
indicates the important features pinpointed through an explanation AI technique.

introducing this regularization term to Equation (1), we can
penalize overly large triggers and thus reduce the number of
adversarial triggers. Note that we use elastic-net rather than
the commonly used lasso regularization term. This is because
inputs to a trojan detection system are usually high dimensional
images (i.e., 32× 32× 3, 224× 224× 3) and elastic-net can
obtain better sparsity than lasso for high input dimensions [32].
By introducing this regularization terms above into Equation (2),
we conclude the complete optimization function

argmin
n∑

i=1

L(f(xi � (1−M) + M�∆), yt) +R, (3)

where R represents R(M,∆) in Equation (2).
2) Explainable AI for Pruning Triggers: Recall that the

triggers correctly resolved by Neural Cleanse overlays
the one intentionally inserted. While they tie to the trigger of
our interest, they do not represent a high-fidelity restoration.
To address this problem and improve the fidelity of resolved
triggers, we design a trigger pruning process which leverages
explainable AI techniques [8], [7]. The rationale behind our
design is as follows.

An overlaying trigger indicates a trigger with additional
irrelevant features enclosed. For an input with an overlaying
trigger, the misclassification is dominated by those features tied
to the actual trigger pertaining to the inserted trojan. Therefore,
the most effective approach to addressing overlaying triggers is
to knock off all the irrelevant features and deem the remaining
set as the trigger intentionally inserted. For explainable AI
techniques, their goal is to identify the most important features
contributing to a classification result. Given an input sample xt

with a resolved trigger attached, an explainable AI technique
could assess the feature importance, eliminate those features
not dominant to the misclassification, and provide us with a
trigger in a higher fidelity.

Given a DNN prediction result y of a particular input x, an
explainable AI technique could pinpoint the top important fea-
tures that contribute to the prediction result by solving the fol-
lowing function: argminM1

L(f(x�M1), y) +λ ·Relastic(M1).
Here, M1 is an explanation matrix with the same dimensionality
as the input x. Each of its elements is either 0 or 1. Using the
function above, one could find a minimal set of features for
x that contributes most to the prediction result y. For many
explainable AI research works, the “one” elements in M1

depict the minimal set of features, and x�M1 indicates the
explanation for the prediction y.

According to the definition of trojan backdoors, a trigger
(M�∆) present in an clean input x could mislead the infected

classifier into categorizing the input data from its original label
to a target label yt. This implies that the trigger (M � ∆)
should be the most important features for all the input samples
with the trigger attached. Based on this property, intuition
suggests that after solving the objective function (3), we can
follow the steps below to knock off irrelevant features in a
restored trigger. First, we add the restored trigger (M �∆)
back to the testing samples and obtain a set of bad samples
(see À in Figure 1). Second, we use these bad samples as input
and solve a new mask by using the explainable AI technique
introduced before, which indicates a group of features that are
mostly important to classifying all the bad samples into the
target class yt (see Á and Â in Figure 1). We can formulate
this process as follows:

argminM̂L(f((x� (1−M) + M�∆)� M̂), yt) + λ ·Relastic(M̂) .
(4)

Here, M and ∆ are solved by Equation (3). M̂ refers to the
refined mask and M̂�∆ represents the final restored trigger.
We use the ADAM [16] algorithm to solve the aforementioned
optimizations (i.e., Equation (3) and Equation (4)). We also
design a strategy to automatically adjust hyperparameters
during the training process. As we will show later in Section V,
this strategy reduces the influence of hyperparameters upon
the restored triggers. Due to space limit, we do not introduce
the details of this strategy. We will release our source code if
the paper get accepted.

C. Anomaly Detection & Trojan Elimination

1) Anomaly Detection: Using the objective function and
pruning method above, we can significantly reduce the number
of adversarial triggers in the search space and increase the
likelihood of detecting the correct trigger. However, for any
given yt and a model f(·), we still inevitably obtain a
solution because of the non-convex property of Equation (3).
Mathematically, given a victim model or a clean model with
n classes, we can obtain n refined masks (M̂1, M̂2, ..., M̂n)
and patterns (∆1,∆2, ...,∆n) by solving Equation (3) and
Equation (4) on each class. To pinpoint the triggers tied
to the truly injected trojans from these restored triggers
(i.e., (M̂1�∆1, ..., M̂n�∆n)), we design an anomaly detection
approach. To be specific, we design a new metric to quantify
the remain triggers and then utilize MAD outlier detection
approach [17] to pinpoint the truly injected trojans.

Design of Anomaly Detection Metric. In this work, we
define our anomaly detection metric as follows:

A(Mt, M̂t,∆t) = log(
‖vec(Mt)‖1 − ‖vec(M̂t)‖1

d2
)− log(accatt) , (5)



in which Mt refers to the trigger resolved from class yt using
Equation (3) and M̂t represents the corresponding refined
trigger obtained from Equation (4). d×d represents the dimen-
sionality of input samples. accatt indicates the misclassification
rate, observed when we insert that resolved trigger into a set
of clean images and then feed these contaminated images into
the learning model f(·). The rationale behind our design is as
follows. First, as is mentioned in Section IV, an intentionally
injected trigger establishes higher attack success rate than
incorrect triggers and false alarms. In addition, false alarms and
incorrect triggers tend to establish a larger different between Mt

and M̂t than an real trigger. As a result, A real trigger should
establish a lower A(Mt, M̂t,∆t) value than false alarms and
incorrect triggers. After computing the score for each class, we
then pinpoint the infected classes by MAD outlier detection.

As we will show later in Section §V, using Equation (5) as
anomaly detection metric and then conducting MAD detection,
we could successfully distinguish the truly injected triggers
from the false alarms and incorrect triggers even when a model
under examination is trained with high-dimensional data and
the trigger varies in sizes/shapes/positions.

2) Trojan Elimination: After detecting the injected trojans
and restoring the corresponding triggers, our final step is to
offset the influence of these trojan backdoors upon a victim
model. In this work, we apply an unlearning strategy to patch
a victim model. Technically, we first construct a set of samples
contaminated by the restored triggers. Then, we retrain the
victim model to forget the trojan and recognize correct labels.
As we will show in Section §V, with our new objective
function, pruning process and anomaly detection approach,
we significantly improve the fidelity of the restored triggers
and the trojan detection accuracy. In addition, we enhance the
capability of patching an infected model.

V. EVALUATION

In this section, we evaluate the effectiveness of our proposed
technique by answering the following questions. (1) Compared
with Neural Cleanse, does our trigger restoration method
provides higher-fidelity triggers? (2) Compared with Neural
Cleanse, does our proposed anomaly detection method
improve over Neural Cleanse’s anomaly detection in
distinguishing the real triggers from incorrect triggers and
false alarms? (3) If the answers of (1) and (2) are positive, do
these advantages lead to better patching effect in comparison
with Neural Cleanse? (4) How effective is TABOR when
there are multiple triggers inserted into target models? (5) How
effective is TABOR for different trojan insertion attacks? (6)
Does the complexity of the target model influence the effect of
trojan backdoor detection? In the following, we first describe
the design and setup of our experiments. Then we specify the
evaluation metrics used in our experiments. Finally, we show
and discuss our experimental results.

A. Experimental Design and Setup

To answer the questions above, we design a series of
experiments, each of which answers one of these questions.

To answer question (1), we first selected five datasets
MNIST, GTSRB, ImageNet, LFW, and YouTube Face. On
each dataset, we trained one clean DNN and 20 victim DNNs
infected with trojans different in shape, size, and location
using BadNet attack [13]. For each victim model, we injected
one trojan backdoor into only one class of that model. In
this way, we obtained three sets of infected DNNs, each of
which takes inputs in a unique dimensionality. Note that we
trained all of these models to achieve decent accuracy on
clean testing samples and almost perfect attack success rate on
the contaminated testing samples (see Column 2 in Table I).
With these models in hand, we restored one trigger from
each class of each model using both TABOR and Neural
Cleanse [30]. We then compared the fidelity of the triggers
restored using TABOR and Neural Cleanse by calculating
a fidelity metric (see the following section for its definition).

To answer question (2), we conducted three sets of experi-
ments to pinpoint the infected class in each model (including
both clean models and victim models) by applying anomaly
detection on the restored triggers. Assuming that the ground
truth (i.e., the truly infected class in each model) is unknown,
we evaluated the detection performance by checking whether
the anomaly detection approaches could successfully pinpoint
the truly infected class in each model. In the first set of
experiments, we applied the anomaly detection method used
in Neural Cleanse to the triggers restored by Neural
Cleanse. In the second set of experiments, we applied
TABOR’s anomaly detection method to the triggers restored by
Neural Cleanse (denoted by NC++). In the third set of
experiments, we applied TABOR’s anomaly detection method to
the triggers restored by TABOR’s trigger restoration approach.
By comparing the results of the first and the second set of
experiments, we can determine if our anomaly detection is
better than the Neural Cleanse anomaly detection. By
comparing the results of the second and the third set of
experiments, we can verify whether high-fidelity triggers
restored by TABOR help improve the accuracy of anomaly
detection. By comparing the results of the first and the third
set of experiments we can examine the end-to-end performance
difference between TABOR and Neural Cleanse in trojan
detection.

To answer question (3), we conducted two sets of exper-
iments. In the first set, we patched the victim models with
the trojans detected by Neural Cleanse using the trojan
elimination strategy introduced in Section §IV-B and record
the Classification Accuracy (CA) and the Attack Success Rate
(ASR) on the models patched (see the following section for
the definition of CA and ASR). In the second set, we patched
these victims models with the trojans detected by TABOR
using the same strategy and also record the CA and ASR. By
comparing the results of the first and second set of experiments,
we can examine whether TABOR improves the model patching
performance compared with Neural Cleanse.

To answer the question (4), we trained two neural networks
on GTSRB and ImageNet datasets and used BadNet to
contaminate these networks. We then followed the following



two alternative approaches to insert trojan backdoors into the
two target models on each dataset. For the first approach,
we implanted two backdoors into a single neural network.
One backdoor is used for misclassifying an image (with the
corresponding trigger A present) into a target class A. The
other is used for mistakenly categorizing that image (with a
different trigger B present) into another target class B. For the
second approach, we also implant two trojans into one single
model. Different from the first approach, we implant the two
trojans into the same class rather than two different classes. We
applied both TABOR and Neural Cleanse to these victim
models and compared their detection performance.

As is mentioned in Section §II, an alternative approach to
implanting a trojan backdoor is Trojan Attack proposed in [21].
Therefore, we answer the question (5) as follows. First, we
downloaded two victim models from the link provided by [21].
Both the models are trained on LFW dataset and infected by
trojans produced by Trojan Attack. Specifically, one victim
model is injected with a square trojan and the other is infected
by a watermark trojan. We selected these models because
Neural Cleanse uses the same models to demonstrate its
defense against the Trojan Attack [21]. Then, we applied both
TABOR and Neural Cleanse to examine the existence of
trojan backdoors against the victim model and compared their
performance in terms of trojan detection.

To answer the question (6), we trained a DNN with more
complicated neural architectures on GTSRB and ImageNet
respectively. Similar to the setup above, we also inserted one
trojan backdoor (i.e., 8 × 8 square trojan located at bottom
right for GTSRB and 40×40 firefox trojan located at top right
for ImageNet) to each of the trained models using BadNet
and obtained two victim models. We again applied TABOR
and Neural Cleanse to these victim models and compared
their results on these complicated models with the results on
the shallow networks infected with the same trojans.

The aforementioned experiments involve five datasets and
we applied the same architecture used by [30] to train networks
on each dataset. The details about these dataset and the
corresponding network architecture can be found in [30].

B. Evaluation Metrics

In this paper, we introduce 3 sets of metrics, which measure
the fidelity of the restored trigger, the correctness of backdoor
detection as well as the patching performance. Here, we provide
their definition below.

Fidelity Measure. We define F1 score as the fidelity measure
to quantify the quality of the restored backdoor. Given a re-
stored trigger, the F1 score is defined as following: F1 = 2· p·re

p+re

, precision = ‖M�Mt‖1
‖M‖1 , recall = ‖M�Mt‖1

‖Mt‖1 . Here, M and
Mt represent the mask of the trigger restored and that of the
ground-truth trigger.

Correctness Measure. In this work, we use 4 different
symbols to represent the detection correctness –  (success
detection), H# (success detection with errors), � (incorrect trojan
detection) and # (failure detection).

Given a learning model,  indicates two situations. First, it
means a detection approach could pinpoint the trojan backdoors
intentionally implanted in a victim model, and does not
mistakenly report the existence of additional trojan backdoors
capable of misclassifying a trigger-inserted image into an
uninfected class. Second, for a clean learning model without a
trojan backdoor implanted, it indicates a detection approach
correctly asserts the nonexistence of backdoors. Similar to
 , H# also represents the successful identification of a trojan
intentionally inserted. Differently, it, however, indicates a
situation where a detection approach also mistakenly pinpoints
the existence of additional backdoors.

With respect to �, it means that, given a learning model
with a backdoor inserted, a detection approach reports the
existence of a backdoor. However, different from the situations
above, it fails to tie the detected trojan backdoor to the correct
infected class. Regarding #, it simply indicates a detection
approach (1) fails to deem a victim learning model contains a
trojan backdoor intentionally inserted or (2) mistakenly reports
the existence of backdoor when the model is actually clean,
carrying no trojan backdoors.

As is discussed in Section § II, given a learning model, a
model user needs a technical approach to ¶ correctly assert
the (non-)existence of a manufactured trojan backdoor and
· – if a trojan exists – restore the corresponding trigger in a
high-fidelity fashion. With a technique like this in hand, she
could manually examine a learning model and take actions
accordingly. As a result, a trojan detection approach is more
favorable if its detection correctness is marked as  or H#. On
the contrary, a detection approach is less useful if its correctness
is marked as � or #. This is simply because # implies the
complete failure of a detection approach whereas � indicates
a false detection which might mislead a security analyst into
taking wrong actions.

Patching Performance Measure. As is mentioned before,
we use classification accuracy and attack success rate on the
patched model as measures for the patching performance. Here,
Classification accuracy refers to the ratio of contaminated
testing samples correctly classified to their original class and
Attack success rate refers to the ratio of contaminated testing
samples misclassified to the target classes.

C. Experimental Results

In the following, we show the experimental results and
analyze the reasons for our findings.

1) Primary Experimental Results: In Table I, we show the
results of the experiments designed to answer Question (1)
∼ (3) (i.e., restoration fidelity, trojan detection correctness,
and patching performance). They indicate the performance of
our technique as well as that of Neural Cleanse when
we change the dimensionality of the input data and vary the
shape/size/position of the inserted trojan backdoor. In addition,
both NC++ and TABOR successfully identify the clean model



Dataset Original
ASR (%)

Fidelity Correctness Patching Performance (%)

NC TABOR NC NC++ TABOR
NC NC++ TABOR

CA ASR CA ASR CA ASR
MNIST 100.0 0.584 0.680 16- 4-# 19- 1-# 20- 74.1 30.3 85.3 18.7 94.8 11.2
GTSRB 99.9 0.447 0.638 1- 4-H# 1-� 14-# 11- 9-# 15- 5-H# 25.2 75.5 46.7 45.8 94.6 1.5

ImageNet 99.9 0.110 0.424 2- 18-# 15- 5-# 16- 4-H# 11.8 89.6 61.7 39.2 91.1 5.8
LWF 96.0 0.186 0.259 16- 4-# 19- 1-# 20- 52.7 47.5 84.1 16.2 91.6 8.6

YouTubeFace 99.4 0.172 0.272 3- 12-H# 2-� 3-# 17- 1-H# 2-# 18- 2-H# 63.6 36.0 76.9 23.0 91.7 4.8

TABLE I: Average trigger fidelity, trojan anomaly detection and model patching results on the 20 infected models trained on
five datasets. Original ASR means the Attack Success Rate of an injected trojan on an original infected model. NC refers to the
baseline approach Neural Cleanse and NC++ means applying TABOR’s anomaly detection on the triggers restored from
Neural Cleanse. “n- ” means the corresponding detection method obtains the correctness of  on n of the 20 models.

of each dataset without false alarms. On the contrary, NC fails
to detect the clean model trained on GTSRB and ImageNet.

Trigger Restoration Fidelity. As illustrated in Table I
(Column 3 & 4), TABOR generally demonstrates higher F1

scores than Neural Cleanse, indicating that TABOR could
restore higher-fidelity triggers than Neural Cleanse. As
discussed in the following section, this capability is critical
because it could (1) help detect the correct target class (2)
enhance the model patching performance.

Trojan Detection Correctness. Going beyond the fidelity
comparison, we further show the performance of our approach
from the detection correctness perspective. As we can observe
from Table I (Column 5), when the dataset is of low dimension-
ality (i.e., MNIST), the performance of Neural Cleanse
is acceptable although it still fails to report several models
infected with large-size trojans. However, when the dataset
becomes complicated, Neural Cleanse oftentimes cannot
point out the existence of the trojan backdoor (indicated by
#). Even if it occasionally points out the existence of the
trojan backdoor in some of these cases, it fails to pinpoint
the correct class in one of them (indicated by �). We also
observe that even for clean models carrying no trojan backdoor,
Neural Cleanse sometimes mistakenly reports that the
model is implanted with a trojan backdoor (represented by
#). There are two main reasons behind these results. First,
as discussed in Section §IV, a trojan backdoor is a special
kind of adversarial sample. [30] designed Neural Cleanse
to search that trigger in a specific adversarial subspace under
the guidance of an optimization objective. With the variation
in trigger shape/size/position, the adversarial subspace got
varied. In different adversarial subspaces, the total number
of adversarial samples might vary, influencing the stability of
Neural Cleanse. Second, regardless of whether a backdoor
exists in a DNN, the optimization-based technique could always
find a locally optimum (i.e., solve a trigger). In [30], Wang
et al. propose to distinguish local optima (incorrect triggers)
from reasonably good local optima (implanted trojan backdoors)
by the size of the restored triggers. However, the restored
incorrect triggers and target trigger may have the similar size
when the injected trigger varies in shape/size/position. As a
result, anomaly detection based merely on the size of the
restored triggers is unable to distinguish the real trojans from
the incorrect trojans and false alarms in many cases.

In comparison with the extremely poor performance Neural
Cleanse exhibits when triggers vary in shape/size/location,
both NC++ and TABOR demonstrate a significant improvement
in trojan backdoor detection. From Table I (Column 6), we can
observe that NC++ not only corrects the incorrect detection
case of Neural Cleanse, but, more importantly, correctly
pinpoints more infected models than Neural Cleanse as
well. This is because the metric defined by Equation (5) is
designed based on the characteristics of adversarial triggers ,
without any assumption of the size/shape/position of a trigger.
As a result, our anomaly detection approach is not influenced
by these variations. This result indicate that one can choose
to abandon the benefit of regularization and still obtain a
certain level of abilities to detect trojan backdoors violating
the characteristic I discussed in Section §IV by replacing our
objective function with the Neural Cleanse version and
then using our anomaly detection.

Compared to NC++, TABOR could further improve the trojan
detection performance. As is also shown in Table I (Column
7), for all settings, our technique could accurately point out the
(non-)existence of a trojan On the one hand, our design eases
the search of intentionally injected triggers by shrinking the
adversarial subspace. On the other hand, our anomaly detection
mechanism is more effective in distinguishing correct triggers
from adversarial triggers. From Table I, we also observe that
given a DNN with one implanted backdoor, our technique
typically identifies redundant triggers pertaining to non-target
classes. However, as discussed in Section §V-B, these false
identifications do not jeopardize the effectiveness of TABOR
because (1) our goal is to minimize the false negative rate
of detection because false negatives generally lead to more
severe loss because we miss an intentionally injected trigger
in the detection. The minimization of the false negative rate
will typically lead to an increase in the false positive rate.
(2) these false identifications (false positives) generally do
not lead to huge loss because the patching process will patch
all the triggers detected. Since TABOR can always detect the
intentionally injected trigger in a victim model, these false
positives will only lead to unnecessary patching operation
but will not affect the security of the model. Note that false
positives do not significantly jeopardize our system’s patching
efficiency, because the patching process usually needs a small
number of additional training samples and less than ten training



(a) Neural Cleanse. (b) TABOR.

Fig. 2: Triggers detected under the same setting using different hyperparameters.

epochs, which is much faster than training a DNN from scratch.

Trojan Elimination Performance. In Table I (Column 8∼13),
we show the trojan elimination results. The results indicate
that the accurate detection and high-fidelity restored triggers in
TABOR can improve the patching performance of the victim
models. First, we can observe that both TABOR and NC++
can successfully patch more victim models than Neural
Cleanse because of more accurate trojan detection. Second,
in comparison with Neural Cleanse and NC++, TABOR
can preserve lower attack success rate in most of the settings.
In some cases, TABOR can almost completely remove the
influence of the trojan backdoor from a victim model. This
result indicates that patching a victim model with a high-fidelity
trigger can improve the patching performance (i.e., increasing
CA and reducing ASR) because when patched with these high-
fidelity triggers, the backdoor activation path within a victim
model will be more accurately covered in the patching phase,
thus more completely deactivated. In addition, the models
patched with TABOR can achieve similar or even higher CA
(i.e., accuracy on the natural testing samples) than the original
models because of the robust training effect of the trojan
unlearning process [12].

GTSRB ImageNet 

Shallow Net Deep Net Shallow Net Deep Net

LFW 

Trojan Attack

(a) Neural Cleanse.
GTSRB ImageNet LFW 

Shallow Net Deep Net Shallow Net Deep Net Trojan Attack

(b) TABOR.

Fig. 3: Triggers detected under the alternative settings. The
detection results of the deep nets are consistent with those of
the shallow networks. As for Trojan Attack with both square
trojan and watermark trojan, both Neural Cleanse and
TABOR detect the correct trigger without any false positives.
Note that we reverse the color of the restored triggers from
ImageNet and LFW dataset.

2) Other Experimental Results: The results of multiple
trojans in one infected model (Question (4)) are as follows.
First, for the two trojans in two classes setting, our technique
could successfully identify both trojan backdoors without any
incorrect trigger. In contrast, Neural Cleanse either fails

to point out the existence of trojan backdoor (for GTSRB) or
only deems incorrect trojans(for ImageNet). Second, for the two
trojans in one class setting, both Neural Cleanse and our
approach point out the existence of trojan backdoors. However,
both of these approaches can only restore the trigger tied to
one trojan backdoor. While this might influence an analyst
to examine the backdoor and maybe patch both triggers, it
does not harm the effectiveness of both detection approaches
in pointing out the existence of trojan backdoors.

In Figure 3, we show results collected from complicated
models and a different attack (Question (5) and (6)). First, we
can observe, when a victim model encloses a trojan inserted by
an attack conducted at hidden layers, both our approach and
Neural Cleanse could correctly identify the real trojan
without mistakenly reporting additional trojans. This indicates
both approaches are robust against the way to implant trojan
backdoors. However, we also note the trigger restored by both
approaches have a relatively low fidelity compared to the
trigger restored from the BadNet attack 2. We believe this is
because the trigger inserted by Trojan Attack [21] has a higher
complexity and, through the optimization objective designed by
both approaches, it is more difficult to completely recover the
trigger intentionally inserted. Second, we can observe, when
victim models are trained with a more complicated model,
both methods could restore similar triggers and achieve same
detection accuracy with the results of the shallow networks.
This indicates that the complexity of target models does not
influence the detection performances. With this observation, we
can conclude the performance variation of both approaches is
not strongly tied to the change of model complexity. In Figure 2,
we also show that the subtle variation in hyperparameters has
nearly no influence upon TABOR. This is a critical characteristic
because users donot need to spend tons of time to tune the
hyperparameters to obtain a optimal detection performance.

VI. DISCUSSION AND FUTURE WORKS

Detection Circumvention. In this work, we design our
objective function under the guidance of a heuristic that an
intentionally inserted trigger should neither be overly large nor
block key objects in the input images. This heuristic is based on
the following fact: an overly large trigger or a trigger blocking
key object in the image is easy to detect by either human
auditing on the inputs or an anomaly detection on the the inputs
using a separate ML model (which can be lightweight and less
accurate but strictly protected). We admit that, in practice, in
spite of all these constraints, we believe an adversary still has
the incentive to launch such an attack, break our assumption,

2In Figure 3, we only illustrate the restored square trigger and the restored
watermark trigger also has a low fidelity.



and thus bypass our detection. However, we argue that this
objective function are still useful because it will significantly
increase the difficulty for an adversary to inject a trojan in a
model. Taking a step back, as we show in Section §V, one can
choose to abandon the benefit of regularization and still obtain
a certain level of abilities to detect trojan backdoors breaking
our assumptions in a learning model by replacing our objective
function with the Neural Cleanse version and then using
our anomaly detection (i.e., NC++). As a future work, we
will conduct a fine-grained ablation study to investigate the
effectiveness of each regularization in our objective function.

Scalability. Because of the more complicated objective func-
tion and the trigger pruning process, TABOR is empirically 2∼3
times slower than Neural Cleanse in trigger restoration. 3

However, the overhead is normally within a couple of hours
in all of our experiments with 66 DNNs and can be further
accelerated by distributed optimization algorithm [31] and
distributed GPU system [28]. it should not influence the usage
of TABOR in real world.

VII. CONCLUSION AND FUTURE WORKS

Given a target DNN, this work shows that, the state-of-
the-art trojan backdoor detection technique is difficult to
accurately point out the existence of a backdoor and patch
the backdoor without false alarms or failure identification,
particularly when the model is trained with high-dimensional
data and the triggers vary in size/shape/location. Inspired by
this, we propose a new technical approach. Technically, it first
identifies a set of candidate triggers by resolving a proposed
optimization function. Second, it prunes these triggers by
leveraging explainable AI techniques. Third, it designs a new
anomaly detection approach to distinguish real triggers from
incorrect triggers in a victim model and eliminate false alarms
in a clean model. Finally, it patches a victim model with the
restored triggers. Following this design, we implement TABOR
and show that our technical approach can not only accurately
point out the existence of backdoors but more importantly
restore and patch these backdoors. Thus, we conclude that
an optimization-based method along with explainable AI and
anomaly detection can significantly escalate the accuracy of
backdoor detection and the ability to patch infected models.
Note that we consider only the regular shape trojans. Future
work will explore the effectiveness of TABOR on other trojan
types (e.g., watermarks).
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