
Adversarial Policy Learning in Two-player Competitive Games

Wenbo Guo 1 Xian Wu 1 Sui Huang 2 Xinyu Xing 1

Abstract
In a two-player deep reinforcement learning task,
recent work shows an attacker could learn an
adversarial policy that triggers a target agent to
perform poorly and even react in an undesired
way. However, its efficacy heavily relies upon
the zero-sum assumption made in the two-player
game. In this work, we propose a new adver-
sarial learning algorithm. It addresses the prob-
lem by resetting the optimization goal in the
learning process and designing a new surrogate
optimization function. Our experiments show
that our method significantly improves adver-
sarial agents’ exploitability compared with the
state-of-art attack. Besides, we also discover
that our method could augment an agent with
the ability to abuse the target game’s unfairness.
Finally, we show that agents adversarially re-
trained against our adversarial agents could ob-
tain stronger adversary-resistance.

1. Introduction
Along with the great success of Deep Reinforcement
Learning (DRL) in the application of two-player games
comes a new form of attack that exploits the weakness
of a policy network to fail the corresponding game agent.
In the past, the development of this new kind of attack
makes many unrealistic assumptions. The most common
one is that an attacker has the capability of manipulating
the observation of an agent by altering the environment
with which the agent interacts. Under this assumption, re-
searchers have proposed a variety of technical methods,
demonstrating significant effectiveness in failing a game
agent in a complicated game task (e.g., (Huang et al., 2017;
Lin et al., 2020)).

Sharing the similar viewpoint elaborated in (Gleave et al.,

1College of Information Sciences and Technology, The Penn-
sylvania State University, State College, PA, USA 2Netflix
Inc., Los Gatos, CA, USA. Correspondence to: Wenbo Guo
<wzg13@ist.psu.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

2020), we argue that attacks developed under this assump-
tion are not practical. For example, given a master agent
deployed in an online video game platform playing with
hundreds of thousands of professional participants, the
manipulation of the agent’s observation could mean the
free alternation of pixel values in the game environment
(e.g., changing the canvas color of the Atari game (ATARI,
2006)). In this context, to achieve this objective, an attacker
might have to spend thousands of hours of effort on hack-
ing the game platform and expect to obtain unauthorized
access to the master agent and the environment with which
it interacts. Given the advance of software hardening tech-
nology, such an expectation cannot always be guaranteed.

In this work, we do not bake in this assumption and pro-
pose a new attack in the context of a two-player competitive
game. Like the recent research (Gleave et al., 2020), we
train an adversarial agent that interacts with a well-trained
victim agent in a two-player game environment and trig-
gers it to react in an undesired fashion. Differently, as we
will elaborate in Section 3.1, our learning method, how-
ever, relaxes an implicit and sometimes unrealistic assump-
tion – a two-player game must strictly follow a zero-sum
setting. We show this relaxation makes adversarial learn-
ing effective for more sophisticated games (e.g., StarCraft).
Besides, our learning method goes beyond exploiting the
weakness of a victim agent. It demonstrates an ability
to abuse the target game’s unfairness when an adversarial
agent has minimal impact on the victim’s decision making.

Technically, instead of the straightforward adoption of an
existing RL approach as is proposed in (Gleave et al.,
2020), our adversarial learning method introduces a new
learning algorithm that not only maximizes the expected
reward of the adversarial agent but, more importantly, min-
imizes that of the victim. As is specified in Section 3.2, to
build our learning algorithm correctly, we have to tackle a
monotonicity challenge or, in other words, ensure the up-
date of an adversarial policy does not incur the random
fluctuation of the learning objective. To do this, we first
remodel a two-player game and define both the adversary
and victim’s expected rewards as a function of the adver-
sarial policy. Second, we carefully design a new objective
function that could theoretically guarantee the monotonic
property in the entire policy learning process.

Adversarial Policy Learning in Two-player Competitive Games

With all these technical endeavors above, Section 4 shows
that we bring fundamental advantages over the state-of-
the-art technique (Gleave et al., 2020) from many aspects.
First, we can enable effective, practical adversarial at-
tacks against sophisticated games (e.g., StarCraft). To the
best of our knowledge, this is the first work that success-
fully demonstrates a practical attack against a sophisticated
video game (i.e., StarCraft II). Second, we can exploit the
unfairness of a game to defeat a target victim agent even
if the adversarial agent has minimal influence on the vic-
tim’s decision making. Third, we can learn an adversar-
ial agent with stronger exploitability and better transfer-
ability. It makes the attack more powerful and practical.
Fourth, our learning algorithm overall demonstrates less
performance variance in the agent learning process than the
existing method. It indicates that, by using our approach
for learning an adversarial policy, an attacker could better
receive an agent with a consistent hostile capability. Last
but not least, our adversarial agent can help agent develop-
ers learn an agent with stronger adversary-resistance. We
released our source code to support future research.1

2. Related Work
Existing attacks on DRL policies primarily follow three
methods – ¶ attack through observation manipulation, ·
attack through action/trajectory manipulation, and ¸ attack
through an adversarial agent. Below, we summarize these
works and discuss their differences from ours.

Attack through observation manipulation. Follow-
ing the conventional attacks on DNNs (Goodfellow et al.,
2015; Papernot et al., 2016; Carlini & Wagner, 2017;
Madry et al., 2018), Huang et al. (2017) and Behzadan &
Munir (2017) first proposed to perturb the victim’s obser-
vation at each time step, forced its policy network to out-
put sub-optimal actions, and thus failed the corresponding
task. As a follow-up, recent efforts (Kos & Song, 2017;
Russo & Proutiere, 2019; Lin et al., 2017; Sun et al., 2020;
Zhang et al., 2021) improved the efficiency of such attacks
by manipulating the observation of a victim agent at some
selected time steps rather than the entire training trajecto-
ries.

In addition to the efficiency improvement, some existing
works (Huang et al., 2017; Behzadan & Munir, 2017; Zhao
et al., 2019; Xiao et al., 2019; Lin et al., 2020) extended the
observation manipulation attacks to black-box settings, in
which attacks can access only the input and output of a vic-
tim agent’s policy network or those of a Q network. In this
work, we do not assume the full privilege of manipulating
an agent’s observations but only the control over an adver-

1https://github.com/psuwuxian/rl_adv_
valuediff

sarial agent. As is discussed in Gleave et al. (2020), this re-
laxation makes the attack more realistic and cost-effective.

Attack through action/trajectory manipulation. Differ-
ent from the observation manipulation attacks mentioned
above, another line of research directly perturbs the output
of the policy network or, in other words, manipulates the
action taken by victim agents. Similar to the observation
manipulation attacks, researchers have also demonstrated
the effectiveness of action manipulation in both black-box
and white-box settings (Lee et al., 2020; Xiao et al., 2019).

Inspired by the observation and action manipulation attacks
launched at the testing phase, some other researchers also
proposed to launch an attack at the training phase. Specif-
ically, they demonstrated that, by manipulating the reward
in training trajectories, attackers could train a victim agent
failing its corresponding task (Ma et al., 2019; Lykouris
et al., 2019; Yang et al., 2019; Kiourti et al., 2019). Like
the statement made above, our work removes the assump-
tion of providing an adversary with the ability to vary ac-
tion or trajectories, making the attack more practical.

Attack through an adversarial agent. Unlike the
two attack methods mentioned above, there is an emerg-
ing attack, focusing on training an adversarial agent to
beat its opponent in a two-player game. For example,
Gleave et al. (Gleave et al., 2020) trained an adversarial
agent for a set of MuJoCo games (Todorov et al., 2012)
by using the PPO algorithm. They have demonstrated that
their adversarial agent could defeat its opponent agent, ex-
hibiting a higher winning rate. In this work, our method
follows an entirely different idea. It can theoretically guar-
antee the adversarial agent could better discover and exploit
its opponent’s weakness even if a two-player game does not
strictly follow a zero-sum setting.

3. Proposed Technique
3.1. Problem Scope and Assumption

In this work, we fix one agent’s policy (either deterministic
or stochastic policy), and train the other to win the corre-
sponding two-player Markov game. Note that this setup is
the same as the one in (Gleave et al., 2020). It simulates a
real-world scenario. A game vendor first releases a master
RL agent. Then, an attacker trains an adversarial agent to
exploit this master’s weakness and win the game for fun
or profit (Supplement S6 shows an initial experiment of at-
tacking a victim that varies its policy). Under this setup, our
work makes the following two assumptions. First, we relax
an implicit assumption of the existing attack (Gleave et al.,
2020). That is, increasing one player’s reward will decrease
the other player’s reward gain. This is true for all zero-
sum two player games. However, in most of the real-world

https://github.com/psuwuxian/rl_adv_valuediff
https://github.com/psuwuxian/rl_adv_valuediff

Adversarial Policy Learning in Two-player Competitive Games

two-player games, the rewards are not designed as exactly
zero-sum. One common practice of breaking the zero-sum
equilibrium is to assign both agents with the same positive
or negative reward when a draw occurs (Bansal et al., 2018;
OpenAI, 2017). The other is to introduce intermediate re-
wards and bring other benefits to agents. For example, it
could help agents establish natural behaviors (Bansal et al.,
2018), encourage their correct movements (Unity, 2020;
Sun et al., 2018), and punish their actions that break the
game rules (Unity, 2020; ATARI, 2006).

Second, following the setup in (Gleave et al., 2020), we as-
sume an adversary can only play his/her adversarial agent
with the victim agent in the corresponding game environ-
ment but does not has access to the victim player’s obser-
vation, value function, and policy network. To enable a
stronger attack, we further assume that the attacker knows
the victim’s instant reward. We believe this is a reasonable
and practical assumption. In a two-player game, the instant
reward of each agent is determined based on the outcome
of each round of the game (e.g., win or loss). Besides, it is
relevant to some statistics during the play (e.g., the number
of enemies killed and the number of collected resources in
StarCraft II (Sun et al., 2018)). This information is always
available for each player of the game. In Supplementary
Section S7, we demonstrate the transferability of our at-
tack. It implies that, even if instant rewards are not acces-
sible, an attacker could still train an adversarial agent in an
environment with visible instant rewards and then success-
fully launch attacks against the victims.

3.2. Technical Overview and Challenge

As is mentioned above, the existing attack (Gleave et al.,
2020) relies on the zero-sum assumption, which implies the
increase in one player’s reward gain will result in the de-
crease in the other player’s gain. Based on this assumption,
by only maximizing the adversarial player’s expected total
reward using the PPO algorithm, this attack could search
for an adversarial policy that consistently decreases the vic-
tim reward and thus fails the victim agent. However, for
most of the real-world Markov games, where the rewards
are not zero-sum, merely maximizing the adversarial re-
ward cannot guarantee to reduce that of the victim agent.
As we will show later in Section 4, without such guarantee,
the existing attack cannot effectively explore the victim’s
weakness nor beating the victim. As such, unlike the state-
of-the-art attack (Gleave et al., 2020), our new approach
does not learn an adversarial agent by simply maximizing
the rewards of the adversary through the PPO algorithm.
Rather, it searches adversarial policies by providing the ad-
versarial agent with the ability to not only maximize its
rewards but, more importantly, impose negative influence
upon the victim agent. For example, in the StarCraft game,
this could be viewed as a learning strategy that, on the one

hand, builds up a strong economy and army to countervail
its opponent and, on the other hand, intervenes in the move-
ments of the opponent and thus limits its expected rewards.
Mathematically, this can be viewed as

J(θ) = maximize(V απ (s)− V υπ (s)) , (1)

which maximizes the value function V απ (s) of the adversar-
ial agent and meanwhile minimizes that of the victim agent.
Here, π = (πα, πυ) is a joint policy.

While the idea mentioned above is straightforward and in-
tuitive, using Eqn. (1) as the objective function for learning
an adversarial agent still confronts two critical challenges.
First, since we do not have the victim observation, we can-
not directly approximate the victim value function V υπ (s)
via a neural network that takes its observation as input. To
solve this problem, we remodel this adversarial agent learn-
ing problem, transform the two-player Markov game into a
one-player Markov Decision Process (MDP). As we will
specify in the follow-up session, with our remodeling, the
victim value function can be redefined as V υπα(s), the out-
put of which depends only upon the information pertaining
to the adversary.

After reformalizing the victim value function, a trivial so-
lution for resolving Eqn. (1) is to apply the vanilla policy
gradient method (Konda & Tsitsiklis, 2000) and approxi-
mate both value functions with two individual neural net-
works (i.e., Gαπα(s) and Gυπα(s)). However, due to the lim-
itation rooted in the vanilla policy gradient method, such a
solution cannot guarantee the monotonic changes in both
value functions. As a result, a more advanced solution is
to replace the V απ (s) in Eqn. (1) with the surrogate ob-
jective proposed in the TRPO algorithm (Schulman et al.,
2015), denoted as Mα

πα(s). Intuitively, this surrogate ob-
jective (i.e., Mα

πα(·)−Gυπα(·)) could ensure the monotonic
increase of the adversarial reward. However, it cannot pro-
vide the monotonic property for the victim player. In ad-
dition, it is also unclear whether the newly added second
term will break the monotonic property for the first term.2

Inspired by the design of TRPO, we tackle the monotonic-
ity challenge above by designing an approximation for the
expected reward difference V απα(s) − V υπα(s). As we will
present and prove in the follow-up section, this approxima-
tion can ensure the monotonic property for the value differ-
ence (i.e., V απαold(s)− V υπαold(s) ≤ V απαnew(s)− V υπαnew(s)).

3.3. Technical Details

Remodeling two-player Markov Game. A two-player
Markov game (Zhang et al., 2019) can be represented as

2As we show in Supplementary Section S6, without ensuring
the monotonic property, this more advanced method cannot train
powerful adversarial agents.

Adversarial Policy Learning in Two-player Competitive Games

(N , S, {A}ii∈N , P , {Ri}i∈N , γ). N = {α, υ} denotes
the agent set, in which α and υ stand for the adversary and
victim, respectively. S denotes the state space observed by
both agents, Ai represents the action space of agent i. P :
S × Aα × Aυ → ∆(S) denotes the transition probability
for any joint actions of both agents. Ri: S × A→ R is the
reward function for agent i. γ is the discount factor. The
state-value function for each agent is defined as a function
of the joint policy π(a|s) =

∏
i∈N πi(ai|s)

V iπ(s) = Ea∼π(a|s)[Ri(s, a) + γEs′∼P [V iπ(s′)]] . (2)

As is mentioned in Section 3.1, the victim agent follows
a fixed policy. Under this setup, we have the following
proposition (see the proof in Supplementary Section S1).

Proposition 1. In a two-player Markov game, if one agent
follows a fixed policy, the state transition of the game sys-
tem will depend only upon the policy of the other agent
rather than their joint policy.

With the proposition above, we can redefine both agents’
state-value and action-value functions as the functions of
the adversarial policy below.

Qiπα(s, a
α) = Ri(s, a) + Es′∼P (s′|s,aα)[γV

i
πα(s

′)] ,

V iπα(s) = Eaα∼πα [Qiπα(s, aα)] ,
(3)

where a = (aα, Fπ
v

(s)). Fπ
υ

(s) represent the actions
sampled from the fixed victim policy.

As is shown above, the new state-value and action-value
functions no longer enclose the policy of the victim nor its
observations or actions. It perfectly addresses the concern
of having to know the victim agent.

Constructing and Solving Objective Function. With
the new definition above, the objective function shown in
Eqn. (1) can be reformalized as

J(θ) = maximizeθ(V απα
θ
(s)− V υπα

θ
(s)). (4)

Here, παθ refers to as the adversarial policy network param-
eterized by θ. As is discussed in Section 3.2, trivial ex-
tending neither the vanilla policy gradient method nor the
TRPO algorithm could guarantee the monotonic property.
To address this problem, we propose the following method.

Based on the Theorem 1 in Schulman et al. (2015), we can
approximate V απα(s) with Mα

πα(πα
′
) and thus obtain the

following relationship

V α
πα

′ (s) ≥Mα
πα(π

α′
) ,

Mα
πα(π

α′
) = Lαπα(π

α′
)− C1KLmax(πα(·|s)||πα

′
(·|s)) ,

(5)

where C1 is a constant. KLmax(πα(·|s)||πα′
(·|s)) =

maxsKL(πα(·|s)||πα′
(·|s)). πα

′
and πα refers to as the

new and old adversarial policy, respectively.

To obtain an approximation for V υπα(s), we follow the idea
in Schulman et al. (2015) and propose the method below.
First, we compute the difference of the victim’s state-value
function before and after the update of the adversarial pol-
icy and come up with the following lemma (see the proof
in Supplementary Section S2).
Lemma 1. Given an old policy πα and a new policy πα

′

in a two-agent Markov game, the difference of the victim
state-value function under each policy is as follows.

V υ
πα

′ (s)− V υπα(s) = Eτ∼πα′ [

∞∑
t=0

γtAυπα(st, a
α
t)] . (6)

Intuitively, Lemma 1 indicates that, if the adversarial agent
switches to a new policy πα

′
from the old one πα at the

state s, the expectation of the victim’s future reward will
change. Technically, one can compute the change by ap-
plying the victim’s advantage function under the old adver-
sarial policy to the trajectories collected by using the new
adversarial policy.

To get rid of the summation over infinite time in Eqn. (6),
we can further rewrite this equation by taking the summa-
tion over all possible states.

V υ
πα

′ (s)− V υπα(s) =
∑
s

ρπα′ (s)
∑
a

πα
′
(aα|s)Aυπα(s, aα),

(7)
where ρπα′ (s) =

∑
t γ

tP (st = s|πα′
).

With the rewritten equation in hand, the computation of
Eqn. (7) is still hard due to the unknown visitation frequen-
cies of πα

′
. To solve this problem, we replace ρπα′ (s) with

ρπα(s) and thus approximate V υ
πα′ (s) with Lυπα(πα

′
) =

V υπα(s) +
∑
s ρπα(s)

∑
a π

α′
(aα|s)Aυπα(s, aα). The rela-

tionship between our approximation and the actual value
function is described in the theorem below (see the proof
in Supplementary Section S3).

Theorem 1. The difference between V υ
πα′ (s) and Lυπα(πα

′
)

is bounded by:

V υ
πα

′ (s) ≤ Lυπα(πα
′
) + C2KLmax(πα||πα

′
) =Mυ

πα(π
α′
) ,

C2 =
4maxs,aα |Aυπα(s, aα)|γ

(1− γ)2 .

(8)

Using the inequality in the theorem above along with that
in Eqn. (5), we can easily derive the following inequality

V α
πα

′ (s)− V υ
πα

′ (s) ≥Mα
πα(π

α′
)−Mυ

πα(π
α′
) =Mπα(π

α′
) .
(9)

Further, we can derive

Mπα(π
α) = Lαπα(π

α)− Lυπα(πα) = V απα − V υπα . (10)

Then, by maximizing Mπα(πα
′
) via gradient ascent at

each iteration, we can ensure Mπα(πα) ≤ Mπα(πα
′
)

Adversarial Policy Learning in Two-player Competitive Games

and thus guarantee the monotonic property for Eqn. (4)
(i.e., (V απα(s)− V υπα(s)) ≤ (V α

πα′ (s)− V υπα′ (s))). Specifi-
cally, Mπα(πα

′
) equals to the following Equation

Mπα(π
α′
) =

∑
s

ρπα(s)
∑
a

πα
′
(aα|s)(Aαπα(s, aα)−

Aυπα(s, a
α))− CKLmax(πα||πα

′
) + C3 ,

(11)

where C = C1−C2 and C3 = (V απα(s)−V υπα(s)) are con-
stants. To solve this Eqn. (11), we first follow the TRPO
algorithm and transform the CKLmax(πα||πα′

) into a trust
region constraint over the average KL-divergence. Even
after transformation, the optimization is still hard to imple-
ment due to the summation over the new policy πα

′
. To

solve this problem, we apply importance sampling and re-
place it with the summation over the old policy that can
be computed via the Monte Carlo method (Thrun, 2000).
Then, we further replace the trust region constrains with
clipped ratio operation introduced in the PPO algorithm
and obtain our final optimization function.

argmaxθ E(aαt ,st)∼π
α
old

[min(clip(ρt, 1− ε, 1 + ε)Aαt , ρtA
α
t)

−min(clip(ρt, 1− ε, 1 + ε)Aυt , ρtA
υ
t)] ,

ρt =
παθ (a

α
t |st)

παold(a
α
t |st)

, Aαt = Aαπα
old

(aαt , st), A
υ
t = Aυπα

old
(aαt , st) .

(12)

To resolve an adversarial policy, we first approximate
the adversarial and victim value function with two neu-
ral networks through the TD-Learning (Tesauro, 1995) and
then update the adversarial policy network by optimizing
Eqn. (12). For a more detailed description of how to obtain
Eqn. (12) and our learning algorithm, readers could refer to
the Supplementary Section S4.

4. Evaluation
In this section, we evaluate our proposed learning al-
gorithm by using five selected games (i.e., four MuJoCo
games and StarCraft II). Due to space limit, we specify the
implementation details and experiment setup (i.e., game
and victim policy selection, evaluation metric, hyperparam-
eters) in Supplementary Section S5.

4.1. Exploitability

Experiment Design. In our first experiment, we use the
state-of-the-art approach (Gleave et al., 2020) as our base-
line and compare it with our proposed attack. To be spe-
cific, given a two-player game as well as a victim agent
well-trained for that game, we train our adversarial agent
against the victim by using the proposed learning algorithm
and compare its winning rate with that collected from the
state-of-the-art method.

Experiment Results. Figure 1 shows the winning rate

comparison between our adversarial agents and that ob-
tained by the existing attack. As we can observe first, over-
all, the adversarial agent trained by our proposed method
demonstrates higher winning rates (or in other words,
stronger exploitability) than that prepared by the state-of-
the-art technique (Gleave et al., 2020). This result confirms
that by maximizing the total reward difference between the
adversary and victim, our method possesses more potential
to discover an effective adversarial policy and thus demon-
strates higher winning rates than the existing attack that
only maximizes the adversarial expected total reward.

Figure 1(a) also shows that our method demonstrates a
more significant increase in the winning rate on StarCraft
II game (98% vs. 31%) than MuJoCo games. It is be-
cause for MuJoCo games, the increase in the adversarial
agent’s reward, to some extent, contributes to the decrease
in the victim’s reward gain. However, the StarCraft II has
a more sophisticated intermediate reward system, in which
the increase in adversarial reward has minimal impact on
the victim reward gain.

In addition to the adversarial winning rate, we also compare
the behaviors of the adversarial agents learned through our
proposed method and that learned through the baseline ap-
proach. We illustrate the agent behaviors through demo
videos at https://tinyurl.com/y3ax4ayk. On
the three MuJoCo games (i.e., You-Shall-Not-Pass, Kick-
And-Defend, and Sumo-Humans), similar to the agent
learned through the baseline, our adversarial agent also es-
tablish weird behaviors and trick the victim into behaving
in an undesired fashion. While the abnormal behaviors are
similar for these three games, the adversarial agent learned
through our method demonstrates stronger exploitability
(See Figure 1(a)).

As we also observe from Fig. 1(a), both the baseline and
our method fail to identify an effective policy to master the
Sumo-Ants game. As is discussed in Gleave et al. (2020),
this is because the observation space under the control of
an adversary is low, leaving less room for it to exploit the
weakness of the victim via its actions. However, we argue,
even if we observe the similar winning rate in existing and
our approaches, this does not imply our proposed method is
as futile as the existing approach. In Figure 1(b), for each
game, we show the combination of winning and tie rates
(i.e., non-loss rate). As we can observe, for Sumo-Ants,
our method could still obtain an adversarial agent that sig-
nificantly prevents the victim from receiving sufficient wins
(i.e., about 88% winning plus tie rates for the adversary).

Following the adversarial agent’s exploitability compari-
son, we also compare the victim agent’s behaviors when
it confronts two different adversarial agents in this game.
As we can observe from the demo videos (https:
//tinyurl.com/yxteeyuo), our adversarial agent

https://tinyurl.com/y3ax4ayk
https://tinyurl.com/yxteeyuo
https://tinyurl.com/yxteeyuo

Adversarial Policy Learning in Two-player Competitive Games

Kick And Defend
Our attack Existing attack

 Sumo Ants

 0 1.5 2.5 3.5 0 1.5 2.5 3.5

50

0

80
100 Starcraft II

W
in

ni
ng

 R
at

e
(%

)

 0 2.5 5.0 7.5 10.5

31

70

You Shall Not Pass

73

 0 1.5 2.5 3.5

 Sumo Humans

36

 0 1.5 2.5 3.5

51 51

98

 Iteration (1e7) Iteration (1e7) Iteration (1e7) Iteration (1e7) Iteration (1e5)

(a) The winning rates of the adversarial agents.

Kick And Defend Sumo Ants

 0 1.5 2.5 3.5 0 1.5 2.5 3.5

50

0

81
100 Starcraft II

N
on

-lo
ss

 R
at

e
(%

)

 0 2.5 5.0 7.5 10.5

6472
51

98

49

86
You Shall Not Pass

73

 0 1.5 2.5 3.5

 Sumo Humans

 0 1.5 2.5 3.5

88

 Iteration (1e7) Iteration (1e7) Iteration (1e7) Iteration (1e7) Iteration (1e5)

(b) The non-loss (i.e., winning plus tie) rates of the adversarial agents.

Figure 1. The performance comparison of adversarial agents against the victim. The adversarial agents obtained from two different
approaches – our proposed method and an existing method (Gleave et al., 2020). Note that the darker solid lines represent the average
winning (plus tie) rates, whereas the lighter bands indicate the corresponding variations between the maximal and minimal winning (plus
tie) rates. The highlighted y-axis labels are the highest average winning/non-loss rates over the total amount of iterations. In addition
to visualizing the winning rate, Supplement Section S6 also conducts a statistical test to further confirm the significance of our method.
Note that Fig. S3 in the Supplement further shows the changes in victim agents’ winning rate during the attack training.

learns to intentionally jump onto the ground, while the
agent learned through the baseline approach keeps still. To
understand this behavior difference, we take a closer look
at the game rule of the Sumo-Ants game and discover an
unfairness design of the game. As we detail in Supplemen-
tary Section S5, if any player falls from the arena without
contacting its opponent, the game will count the match as a
draw. In our experiment, our adversarial agent learns to ex-
ploit this rule, preventing the victim agent from winning the
game. This result indicates that our attack could find and
abuse the game unfairness when the adversary has mini-
mal impact on the victim’s observation space. Unlike our
attack, the baseline does not demonstrate the capability of
exploiting the game’s unfairness and thus fail to establish
sufficient exploitability against the victim.

Finally, the light color bands in Fig. 1 shows the perfor-
mance variance of each method. As we can observe that
our proposed method generally has less variation in agent
performance than the existing technique. It means that our
proposed algorithm is more robust against those random-
ness factors, such as the initial game state and the proba-
bilistic state transition. By following our algorithm, an at-
tacker could, therefore, learn an adversarial agent with con-
sistent performance even if the game initializes his agent at
different random places in the adversarial learning process.

In this work, we also conduct some other comparison ex-
periments. Due to space limit, we present them in the
Supplementary Section S6. For example, we compare
our method with a method which utilizes only the second

Table 1. The performance of the victims against corresponding
regular agents before and after the adversarial retraining. The
numbers on the gray canvas represent the winning rates, whereas
those on the white one indicate the win plus tie rate.

Game After retraining (%) Before retraining (%)
Kick And Defend 12.0 15.0 12.0 14.0

You Shall Not Pass 59.0 59.0 60.0 60.0
Sumo Humans 81.0 92.0 75.0 87.0

Sumo Ants 41.0 59.0 34.0 55.0
StarCraft II 83.0 87.0 46.0 47.0

term in Eqn. (12) as the objective function (i.e., argmaxθ −
E[min(clip(ρt, 1−ε, 1+ε)Aυt , ρtAυt)]). This comparison helps
assess whether focusing only on reducing the victim’s re-
ward can lead to the same attack effect. Besides, we also
compare our method with an approach without the mono-
tonic property. This comparison helps us double confirm
the importance of monotonicity.

4.2. Adversary Resistance

Experiment Design. Using the method training the adver-
sary, Gleave et al. (2020) demonstrate that one could retrain
the victim and thus improve its adversary resistance. In this
experiment, we follow their experimental setup, using the
way we train the adversary to retrain the corresponding vic-
tim agent. Then, we examine the adversary resistance of
the retrained agent. Further, we explore the generalizabil-
ity of the retrained victim agents. Specifically, we set the
retrained victim agent to play with other regular agents for

Adversarial Policy Learning in Two-player Competitive Games

Kick And Defend Sumo Ants

 0 0.5 1.0 0 0.5 1.0

50

0

100 Starcraft II
W

in
ni

ng
 R

at
e

(%
)

 0 4.0 12.0 20.0

You Shall Not Pass
93

 0 0.5 1.0 0
25

 Sumo Humans

60

 0 0.5 1.0
 Iteration (1e7) Iteration (1e7) Iteration (1e7) Iteration (1e7) Iteration (1e5)

72

(a) The winning rates of the adversarial-retrained victim agent against our adversarial agent in five games.

Kick And Defend Sumo Ants

 0 0.5 1.0 0 0.5 1.0

50

0

100 Starcraft II

N
on

-lo
ss

 R
at

e
(%

)

 0 4.0 12.0 20.0

You Shall Not Pass
91 99

 Sumo Humans

 0 0.5 1.0

91

 Iteration (1e7) Iteration (1e7) Iteration (1e7) Iteration (1e7) Iteration (1e5)

73

 0 0.5 1.0

You Shall Not Pass
93

(b) The non-loss rates of the adversarial-retrained victim agent against our adversarial agent in five games.

Figure 2. The performance of victim agents after being retrained by using our proposed learning method.

100 rounds and report its winning rate. Through this setup,
we study whether the adversarial training wipes out the re-
trained agent’s ability to play with other regular agents.

Last but not least, we also measure the retrained victim
agent’s robustness against our attack and its robustness
against the baseline attack (Gleave et al., 2020). Specif-
ically, we take the victim agent retrained against our ad-
versarial attack to play with the adversarial agent learned
through the baseline and vice versa. In this process, we
record the winning rates of the retrained victim agent and
examine whether adversarial training against our proposed
attack could lead to a more adversary-resistance agent.

Experiment Results. In Figure 2, we show the perfor-
mance of the victim agent after being retrained.3 We can
observe from the figure that, for all of the five games, the
adversarial training takes effect, helping the victim agent
pick up the ability to minimize the influence of adversar-
ial agents upon itself. For example, the winning rate of the
retrained agent returns 96% in the “You-Shall-Not-Pass”
game. For others, the win plus tie rates bounce back to
> 70%. As is also shown in table 1, adversarial retraining
imposes a negligible influence on the victim agent’s ability
to play with another regular agent. It indicates that by re-
training the victim agent with a mix of adversarial episodes
and normal episodes, the retrained agent could establish the
adversarial robustness while preserving its generalizability
against regular agents. In Supplementary Section S6, we
study the influence of the episode split upon the robustness
and generalizability of the retrained victim agent.

Table 2 shows the performance of retrained agents against
different adversarial agents. As we can first observe from

3Table S1 in Supplement shows the victim agents’ perfor-
mances against our adversarial agents before retraining.

Table 2. The robustness comparison of the victim retrained
against our attack and retrained against the baseline at-
tack (Gleave et al., 2020). The numbers in the table are the win
plus tie of the retrained victim agent. “Base” and “adv.” refers to
“baseline” and “adversary”, respectively.

Games Our retrained victim (%) Baseline retrained victim (%)
vs. Our adv. vs. Base adv. vs. Our adv. vs. Base adv.

Kick And Defend 68.0 66.0 35.0 73.0
You Shall Not Pass 93.0 94.0 86.0 91.0

Sumo Humans 90.0 82.0 71.0 80.0
Sumo Ants 98.0 91.0 91.0 93.0
StarCraft II 89.0 99.0 4.0 87.0

the table that the victim agent retrained against our attack
is capable of defeating the adversarial agent obtained by
the state-of-art attack (i.e., Column 3). It could achieve the
similar robustness to the victim retrained against the base-
line (i.e., Column 3 vs. 5). On the contrary, when playing
with our adversarial agent, the baseline retrained victim is
less effective (i.e., Column 4). It cannot achieve compara-
ble performance with our retrained victim (i.e., Column 1
vs. 4). The result indicates that an attack with a strong
exploitability could help the victim agent pick up a robust
policy, which is also resistant to an adversarial policy with
a weaker exploitability. This finding suggests that users
should utilize the more powerful adversarial agent for ad-
versarial retraining and expect the retrained agent could de-
feat weaker adversaries.

4.3. Root Cause Analysis

Experiment Design. To further understand the root cause
behind adversarial policy’s effectiveness, we follow Gleave
et al. (2020) and conduct the following experiment. First,
we blind the victim’s observation on the adversary or, in
other words, zero out the victim observation pertaining
to the adversary. Then, we test the partially blind vic-

Adversarial Policy Learning in Two-player Competitive Games

Table 3. The win plus tie rate of the (blind) victim agent against
our adversarial agent and that obtained by the baseline at-
tack (Gleave et al., 2020). “Before” and “After” indicates before
and after blinding the victim observations, respectively.

Games Our attack (%) Baseline attack (%)
Before After Before After

Kick And Defend 14.0 94.0 45.0 97.0
You Shall Not Pass 26.0 98.0 48.0 97.0

Sumo Humans 53.0 67.0 65.0 68.0
Sumo Ants 86.0 87.0 91.0 95.0
StarCraft II 2.0 24.0 64.0 98.0

tim against our adversarial agent and that learned from the
state-of-the-art method Gleave et al. (2020). Using this ex-
periment, we demonstrate that adversarial agent not only
can win by taking actions to induce natural observations
that are adversarial to the victim but also can win by ex-
ploiting game unfairness.4

Experiment Results. Table 3 shows the victim’s win plus
tie rate before and after blinding. Similar to the findings
in Gleave et al. (2020), the victim winning rates against
both attacks increase dramatically in the games – You-
Shall-Not-Pass and Kick-And-Defend. This result aligns
the results present in Gleave et al. (2020). It indicates that,
for these two games, the adversarial agent wins the victim
by indirectly influencing the victim’s observation. How-
ever, we also discover the blinding has no impact on our
attack in the Sumo-Ants game. This finding confirms that,
for this game, our adversarial agent beats the victim by ex-
ploiting the game unfairness. Last but not least, our attack
establishes a lower adversarial winning rate drop than the
existing attack on the Starcraft II games. This confirms that
our attack has a stronger exploitability than the existing at-
tack on this sophisticated game.

5. Discussion and Future Work

Transferability. In Supplementary Section S7, we show
that both our attack and the state-of-art attack establish
a certain level of transferability. Specifically, we find
that adversarial policies that explore game unfairness have
stronger transferability than those disturbing the victim ob-
servation through weird actions. The above observations
are obtained when varying only hyperparameters and ini-
tial states. Recent works (Huang et al., 2017) on the trans-
ferability of the observation manipulation attacks show that
the transferability also relies upon many other factors, such
as games themselves and learning algorithms. In the fu-

4In Supplement S6, we also follow Gleave et al. (2020) and
conduct an in-depth analysis on the activations gathered from the
victim policy networks. The analysis further demonstrates the be-
havior differences between our adversarial agent and that learned
from the attack in Gleave et al. (2020).

ture, we will thoroughly evaluate the transferability of our
proposed attack under different setups.

Other games. In addition to the two-player Markov game
studied in this work, there are two other types of popular
competitive games – two-player extensive-form games and
two-player multi-agent games (Zhang et al., 2019).5 Re-
garding the first type, at any given time step, only one agent
can observe the game state and thus take action. As such,
the state transition of this type of game depends solely upon
the action of one agent. Existing research (Srinivasan et al.,
2018) has extended the vanilla policy gradient to train a
DRL agent in extensive-form games, such as Poker (Lanc-
tot et al., 2019). Based on the learning method proposed
in (Srinivasan et al., 2018), our attack can be potentially
generalized to this game. The key challenge is how to en-
able monotonicity for the adversarial learning algorithm.
In the future, we will explore how to design the learning
objective function to guarantee monotonicity. Concerning
the two-player multi-agent games, the agents in one team
cooperate with each other to compete against the agents
from the other team. Enabling an adversarial attack in this
game is equivalent to training a set of cooperative agents
to defeat another set of well-trained agents. As discussed
in (Daskalakis et al., 2009), the key challenge of preparing
a group of cooperative agents is how to handle the infor-
mation sharing among the agents. Recent research (Zhang
et al., 2018) has explored how to extend the vanilla policy
gradient to a multi-agent setting. As part of future work,
we will borrow the idea from this technique and generalize
our attack to multi-agent settings.

Zero-sum game vs. two-player game. As is mentioned
in Section 3.1, in most real-world two-player games, the
reward design of the game usually does not follow the
rule of zero-sum.6 As such, our proposed method could
demonstrate a performance advantage over the state-of-the-
art method (Gleave et al., 2020) (which is built on top of the
PPO algorithm). However, we admit that if a two-player
game follows the zero-sum rule restrictively, in theory, the
adversarial agent trained by our approach will demonstrate
the same performance as that prepared by Gleave et al.
(2020). In other words, under the zero-sum setup, our ob-
jective function could be viewed as maximizing the adver-
sarial expected reward, which is equivalent to the objec-
tive function of the PPO method (See Supplement S8 for
the demonstration of the equality of our attack and Gleave
et al. (2020) in a zero-sum game). While this could poten-
tially become a limitation of our work, we argue this does

5Existing research (Daskalakis et al., 2009) has proven that
training an RL agent for multi-player games is an NP problem.
As such, we do not consider multi-player games in this work.

6Such games can also be taken as general-sum competitive
games.

Adversarial Policy Learning in Two-player Competitive Games

not dilute our contribution. As is discussed above, to ob-
tain optimal performance, most two-player games, if not
all, do not follow the zero-sum rule strictively. Therefore,
it leaves room for an attacker to leverage our approach for
exploiting the weakness of agents in the game.

6. Conclusion
In two-player Markov games, existing methods for learn-
ing an adversarial policy either make unrealistic assump-
tions or fail to demonstrate sufficient advantages over tar-
get agents (i.e., victim agents), especially when the game
does not strictly follow the zero-sum setup. In this work,
we develop a new attack against a victim agent trained by
DRL in the context of two-player games. Technically, we
carefully design the objective function of our adversarial
learning algorithm such that the agent trained by our at-
tack could guarantee to increase the expected reward dif-
ference between the adversary and victim monotonically.
By using five games commonly utilized in reinforcement
learning evaluation, we show that our attack not only sig-
nificantly outperforms the state-of-the-art attack, but also
demonstrates an ability to abuse the unfairness of the tar-
get game. With this discovery, we safely conclude that our
newly proposed attack could help an attacker learn an ad-
versarial agent much more effective in defeating victims.

Acknowledgments
We would like to thank the anonymous reviewers and Meta
reviewer for their helpful comments. This project was
supported in part by NSF grant CNS-1718459 and CNS-
1954466, by ONR grant N00014-20-1-2008, by the Ama-
zon Research Award, and by the IBM Ph.D. Fellowship
Award.

References
ATARI. Atari games. https://www.atari.com/,

2006.

Bansal, T., Pachocki, J., Sidor, S., Sutskever, I., and Mor-
datch, I. Emergent complexity via multi-agent competi-
tion. In Proc. of ICLR, 2018.

Behzadan, V. and Munir, A. Vulnerability of deep rein-
forcement learning to policy induction attacks. In Proc.
of MLDM, 2017.

Carlini, N. and Wagner, D. Towards evaluating the robust-
ness of neural networks. In Proc. of S&P, 2017.

Daskalakis, C., Goldberg, P. W., et al. The complexity of
computing a nash equilibrium. SIAM Journal on Com-
puting, 2009.

Gleave, A., Dennis, M., Kant, N., Wild, C., Levine, S., and
Russell, S. Adversarial policies: Attacking deep rein-
forcement learning. In Proc. of ICLR, 2020.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining
and harnessing adversarial examples. In Proc. of ICLR,
2015.

Huang, S., Papernot, N., Goodfellow, I., Duan, Y., and
Abbeel, P. Adversarial attacks on neural network poli-
cies. In Proc. of ICLR workshop, 2017.

Kiourti, P., Wardega, K., Jha, S., and Li, W. Trojdrl: Tro-
jan attacks on deep reinforcement learning agents. arXiv
preprint arXiv:1903.06638, 2019.

Konda, V. R. and Tsitsiklis, J. N. Actor-critic algorithms.
In Proc. of NeurIPS, 2000.

Kos, J. and Song, D. Delving into adversarial attacks on
deep policies. In Proc. of ICLR Workshop, 2017.

Lanctot, M., Lockhart, E., Lespiau, J.-B., Zambaldi, V.,
Upadhyay, S., Pérolat, J., Srinivasan, S., Timbers, F.,
Tuyls, K., Omidshafiei, S., et al. Openspiel: A
framework for reinforcement learning in games. arXiv
preprint arXiv:1908.09453, 2019.

Lee, X. Y., Ghadai, S., Tan, K. L., Hegde, C., and Sarkar,
S. Spatiotemporally constrained action space attacks on
deep reinforcement learning agents. In Proc. of AAAI,
2020.

Lin, J., Dzeparoska, K., Zhang, S. Q., Leon-Garcia, A.,
and Papernot, N. On the robustness of cooperative multi-
agent reinforcement learning. In Proc. of DLS Workshop,
2020.

Lin, Y.-C., Hong, Z.-W., Liao, Y.-H., Shih, M.-L., Liu, M.-
Y., and Sun, M. Tactics of adversarial attack on deep
reinforcement learning agents. In Proc. of IJCAI, 2017.

Lykouris, T., Simchowitz, M., Slivkins, A., and Sun, W.
Corruption robust exploration in episodic reinforcement
learning. arXiv preprint arXiv:1911.08689, 2019.

Ma, Y., Zhang, X., Sun, W., and Zhu, J. Policy poisoning
in batch reinforcement learning and control. In Proc. of
NeurIPS, 2019.

Madry, A., Makelov, A., Schmidt, L., et al. Towards deep
learning models resistant to adversarial attacks. In Proc.
of ICLR, 2018.

OpenAI. Roboschool: open-source software for
robot simulation. https://openai.com/blog/
roboschool/, 2017.

https://www.atari.com/
https://openai.com/blog/roboschool/
https://openai.com/blog/roboschool/

Adversarial Policy Learning in Two-player Competitive Games

Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik,
Z. B., and Swami, A. The limitations of deep learning in
adversarial settings. In Proc. of EuroS&P, 2016.

Russo, A. and Proutiere, A. Optimal attacks on
reinforcement learning policies. arXiv preprint
arXiv:1907.13548, 2019.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and
Moritz, P. Trust region policy optimization. In Proc.
of ICML, 2015.

Srinivasan, S., Lanctot, M., Zambaldi, V., Pérolat, J., Tuyls,
K., Munos, R., and Bowling, M. Actor-critic policy
optimization in partially observable multiagent environ-
ments. In Proc. of NeurIPS, 2018.

Sun, J., Zhang, T., Xie, X., Ma, L., Zheng, Y., Chen, K.,
and Liu, Y. Stealthy and efficient adversarial attacks
against deep reinforcement learning. In Proc. of AAAI,
2020.

Sun, P., Sun, X., Han, L., Xiong, J., Wang, Q., Li, B.,
Zheng, Y., Liu, J., Liu, Y., Liu, H., et al. Tstarbots: De-
feating the cheating level builtin ai in starcraft ii in the
full game. arXiv preprint arXiv:1809.07193, 2018.

Tesauro, G. Temporal difference learning and td-gammon.
Communications of The ACM, 1995.

Thrun, S. Monte carlo pomdps. In Proc. of NeurIPS, 2000.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In Proc. of ICIRS, 2012.

Unity. Unity machine learning agents toolkit. https:
//unity3d.com/machine-learning/, 2020.

Xiao, C., Pan, X., He, W., Peng, J., Sun, M., Yi, J., Li, B.,
and Song, D. Characterizing attacks on deep reinforce-
ment learning. arXiv preprint arXiv:1907.09470, 2019.

Yang, Z., Iyer, N., et al. Design of intentional backdoors
in sequential models. arXiv preprint arXiv:1902.09972,
2019.

Zhang, H., Chen, H., Boning, D., and Hsieh, C.-J. Ro-
bust reinforcement learning on state observations with
learned optimal adversary. In Proc. of ICLR, 2021.

Zhang, K., Yang, Z., Liu, H., Zhang, T., and Başar, T. Fully
decentralized multi-agent reinforcement learning with
networked agents. arXiv preprint arXiv:1802.08757,
2018.

Zhang, K., Yang, Z., and Başar, T. Multi-agent reinforce-
ment learning: A selective overview of theories and al-
gorithms. arXiv preprint arXiv:1911.10635, 2019.

Zhao, Y., Shumailov, I., Cui, H., Gao, X., Mullins, R.,
and Anderson, R. Blackbox attacks on reinforcement
learning agents using approximated temporal informa-
tion. arXiv preprint arXiv:1909.02918, 2019.

https://unity3d.com/machine-learning/
https://unity3d.com/machine-learning/

Adversarial Policy Learning in Two-player Competitive Games

S1 Proof of Proposition 1

Proposition 1. In a two-player Markov game, if one agent follows a fixed policy, the state transition
of the game system will depend only upon the policy of the other agent rather than their joint policies.

Proof. Without the loss of generalizability, we denote the agent as α and υ, and assume the agent
υ follows a fixed policy. At state st, the probability of taking the joint actions (aαt , a

υ
t) and transiting

to st+1 is

P (st+1, a
α
t , a

υ
t |st) =P (st+1|aαt , aυt , st)P (aαt , a

υ
t |st) = P (st+1|aαt , aυt , st)P (aαt |aυt , st)πυ(aυt |st)

=c · P (st+1|aαt , aυt , st)P (aαt |aυt , st) = c · P (st+1|aαt , aυt , st)πα(aαt |st) ,
(1)

where P (aυt |st) = c. Given that at a time step t, an action of the agent aαt depends only upon the
current state st, we have πα(aαt |st) = P (aαt |aυt , st).

As we can observe from Eqn. (1), during the adversarial training process, the only changed part
is policy πα. As such, the change in πα determines the change in state transition and the in change
both agent’s value functions. To be specific, given a set of trajectories {τ1, . . . , τM}, the state-value
function of α agent V απ can be computed by

V απ =
M∑
m=1

Rα(τm)P (τm; θ) . (2)

The state-value function of υ agent V υπ can be computed by

V υπ =

M∑
m=1

Rυ(τm)P (τm; θ) . (3)

In Eqn. (2) and Eqn. (3),

P (τ ; θ) = P (s0)

T∏
t=1

P (st, a
α
t−1, a

υ
t−1|st−1)

= P (s0)

T∏
t=1

P (st, a
α
t−1|aυt−1, st−1)P (aυt−1|st−1) .

(4)

Since the victim agent follows a fixed policy, P (aυt−1|st−1) = c. Then, Eqn. (4) can be rewrote as

P (τ ; θ) = P (s0)
T∏
t=1

P (st, a
α
t−1, a

υ
t−1|st−1)

= P (s0)
T∏
t=1

c · P (st|aαt−1, a
υ
t−1, st−1)πα(aαt−1|st−1) .

(5)

Similar to Eqn. (1), πα is the only changed component in Eqn. (5). Plugging Eqn. (5) into either
Eqn. (2) or Eqn. (3), we can find out the change in both agent’s state-value functions depend only
upon the policy πα. Combining these observations with the aforementioned observation in Eqn. (1),
we can conclude that the change in πα determines the change in state transition as well as the change
in both agent’s value functions. �

1

S2 Proof of Lemma 1

Lemma 1. Given a old policy πα and a new policy πα
′

in a two-agent Markov game, the difference
of the victim state-value function under each policy is as follows.

V υ
πα

′ (s)− V υπα (s) = E
τ∼πα′ [

∞∑
t=0

γtAυπα (st, a
α
t)] . (6)

Proof. Recall that in Section 3.3, we state that the victim value function can be redefined as follows

Qυπα (st, a
α
t) = Rυ(st, at) + γEst+1|st,at [V

υ
πα (st+1)] . (7)

In addition, the tower property of conditional expectations gives the following equation

EX,Y [f(x, y)] = EXEY |X [f(x, y)] = EX,Y EY |X [f(x, y)] , (8)

where x and y are random variables. Based on Eqn. (8), we also have

E
τ∼πα′ V υπα (st+1) = E

τ∼πα′ [Est+1|st,at [V
υ
πα (st+1)]] . (9)

Then, we can compute the victim state-value function difference.

V υ
πα

′ (s)− V υπα (s) =E
τ∼πα′ [

∞∑
t=0

γtRυ(st, at)]− V υπα (s)

=E
τ∼πα′ [

∞∑
t=0

γt[Rυ(st, at)− V υπα (s) + V υπα (s)]]− V υπα (s)

=E
τ∼πα′ [

∞∑
t=0

γtRυ(st, at)−
∞∑
t=0

γtV υπα (s) +

∞∑
t=0

γtV υπα (s)]− V υπα (s)

=E
τ∼πα′ [

∞∑
t=0

γt[Rυ(st, at)− V υπα (s)] +

∞∑
t=0

γt+1V υπα (st+1) + V υπα (s)]− V υπα (s)

=E
τ∼πα′ [

∞∑
t=0

γt[Rυ(st, at)− V υπα (s)] +

∞∑
t=0

γt+1V υπα (st+1)]

=E
τ∼πα′ [

∞∑
t=0

γt[Rυ(st, at)− V υπα (s) + γV υπα (st+1)]]

=E
τ∼πα′ [

∞∑
t=0

γt[Rυ(st, at)− V υπα (s) + γEst+1|st,at [V
υ
πα (st+1)]]]

=E
τ∼πα′ [

∞∑
t=0

γt[Rυ(st, at) + γEst+1|st,at [V
υ
πα (st+1)]− V υπα (s)]]

=E
τ∼πα′ [

∞∑
t=0

γt[Qυπα (st, a
α
t)− V υπα (s)]]

=E
τ∼πα′ [

∞∑
t=0

γtAυπα (st, a
α
t)] ,

(10)

where at = (aαt , F
πv (st))).

S3 Proof of Theorem 1

Theorem 1. The difference between V υ
πα′ (s) and Lυπα(πα

′
) is bounded by:

V υ
πα

′ (s) ≤ Lυπα (πα
′
) + C2KLmax(πα||πα

′
) = Mυ

πα (πα
′
) ,

C2 =
4maxs,aα |Aυπα (s, aα)|γ

(1− γ)2
.

(11)

2

Proof.

V υ
πα

′ (s)− Lυπα (πα
′
)

=
∑
s

P (st = s|πα
′
)
∑
a

πα
′
(aα|s)

∑
t

γtAυπα (s, aα)−
∑
s

P (st = s|πα)
∑
a

πα
′
(aα|s)

∑
t

γtAυπα (s, aα)

=E
st∼πα

′ [
∑
t

γtE
a∼πα′

(·|s)[A
υ
πα (s, aα)]]− Est∼πα [

∑
t

γtE
a∼πα′

(·|s)[A
υ
πα (s, aα)]]

=
∑
t

γt[E
st∼πα

′ [Āυ
πα

′ (st)]− Est∼πα [Āυ
πα

′ (st)]] ,

(12)

where Āυ
πα′ (s) = Ea∼πα′ (·|s)[A

υ
πα(s, aα)].

Let nt denotes the number of time steps that aα
′

i 6= aαi for time step i < t, where aα
′

i ∼ πα
′

and

aαi ∼ πα. That is, the number of time steps that πα
′

and πα disagrees before time step t.
Then,

E
st∼πα

′ [Āυ
πα

′ (st)]− Est∼πα [Āυ
πα

′ (st)] = P (nt > 0)(E
st∼πα

′ |nt>0
[Āυ
πα

′ (st)]− Est∼πα|nt>0[Āυ
πα

′ (st)]) . (13)

Given that (πα
′
, πα) is an β−coupled policy pair [11], we have

P (aα
′
i = aαi) ≥ 1− β . (14)

We change the original notation α to β to avoid confusion with the α defined in our paper (i.e., the
adversarial agent). Then, we have

p(nt = 0) =

t∏
i=1

P (aα
′
i = aαi) ≥ (1− β)t , (15)

and p(nt > 0) ≤ 1− (1− β)t. Then, we can derive

E
st∼πα

′ [Āυ
πα

′ (st)]− Est∼πα [Āυ
πα

′ (st)]

=P (nt > 0)(E
st∼πα

′ |nt>0
[Āυ
πα

′ (st)]− Est∼πα|nt>0[Āυ
πα

′ (st)])

≤P (nt > 0)(|E
st∼πα

′ |nt>0
[Āυ
πα

′ (st)]|+ |Est∼πα|nt>0[Āυ
πα

′ (st)]|)

(a)

≤P (nt > 0)4βmaxs,aα |Aυπα (s, aα)|

≤(1− (1− β)t)4βmaxs,aα |Aυπα (s, aα)| .

(16)

Where (a) can be obtained based on the following relationship. First, given that Eaα∼πα [Aυπα(st, a
α)] =

0, we have
Āυ
πα

′ (st) =E
aα

′∼πα′
(·|st)

[Aυπα (st, a
α′

)]

=P (aα 6= aα
′
)E

(aα,aα
′
)∼(πα,πα

′
)|aα 6=aα′ [Aυπα (st, a

α′
)−Aυπα (st, a

α)] .
(17)

Based on Eqn. (17), we can further derive that

|Āυ
πα

′ (st)| ≤P (aα 6= aα
′
)E[|Aυπα (st, a

α′
)|+ |Aυπα (st, a

α)|] ≤ β · 2maxs,aα |Aυπα (s, aα)| . (18)

Given that Āυ
πα′ at any state fulfills the inequality in Eqn. (18), the expectation of Āυ

πα′ over all
the states also obeys this inequality. As such, we have

|Est∼πα|nt>0[Āυ
πα

′ (st)]| ≤ β · 2maxs,aα |Aυπα (s, aα)| . (19)

According to Eqn. (19), we can have the (a) in Eqn. (16).
Plugging Eqn. (16) into Eqn. (12), we have

V υ
πα

′ (s)− Lυπα (πα
′
) =

∑
t

γt[E
st∼πα

′ [Āυ
πα

′ (st)]− Est∼πα [Āυ
πα

′ (st)]]

≤
∑
t

γt(1− (1− β)t)4βmaxs,aα |Aυπα (s, aα)|

=4εβ
∑
t

γt(1− (1− β)t)

=
4εγβ2

(1− γ)(1− γ(1− β))

≤
4εγβ2

(1− γ)2
,

(20)

3

where ε = maxs,aα |Aυπα(s, aα)|. According to a Proposition in [5], β = maxsTV(πα(·|s)||πα′
(·|s)).

Then, we can derive

V υ
πα

′ (s) ≤ Lυπα (πα
′
) +

4εγβ2

(1− γ)2
. (21)

According to [10], TV(p||q)2 ≤ KL(p||q). Plugging this relationship into Eqn. (21), we have

V υ
πα

′ (s) ≤ Lυπα (πα
′
) + C2KLmax(πα(·|s)||πα

′
(·|s)) , (22)

where C2 =
4γmaxs,aα |Aυπα (s,aα)|

(1−γ)2 . �

S4 Adversarial Learning Algorithm

In this section, we first describe how to transform the approximated objective function Mπα(πα
′
) into

our final adversarial learning objective function, followed by our adversarial learning algorithm.
Here, we first rewrite the Eqn. (11) in Section 3.3,

Mπα(π
α′
) =

∑
s

ρπα(s)
∑
a

πα
′
(aα|s)(Aαπα(s, aα)−Aυπα(s, aα))− CKLmax(πα||πα

′
) + C3 , (23)

where C = C1 − C2 and C3 = (V απα(s) − V υπα(s)) are constants. Then, by following the method
introduced in TRPO, we can further transform the maximization of Eqn. (23) into the following form

maximizeπα′
∑
s

ρπα(s)
∑
a

πα
′
(aα|s)(Aαπα(s, aα)−Aυπα(s, aα)) ,

s.t. Es∼πα [KL(πα(·|s)||πα
′
(·|s))] ≤ δ .

(24)

As we can see from the equation above, this transformation replaces KLmax (πα||πα′
) in Eqn. (23)

with Es∼πα [KL(πα||πα′
)] for the following reasons. Es∼πα [KL(πα||πα′

)] is the average KL divergence
between πα and πα

′
, which can be easily computed by using the Monte Carlo method [14]. Using this

expectation as the substitution for maximum KL divergence, it is no longer required us to perform
intensive computation at each state. In addition to the computation benefit, the replacement of
maximum KL divergence indicates the ease of solving optimization. When performing optimization
with maximum KL divergence, we have to introduce a constraint for each state. Given a two-player
game with many states, this means imposing a large number of constraints on our optimization problem
and potentially introduces the difficulty in getting an optimal solution. Note that, as is experimented
in [9, 8], applying such an approximation imposes only a minor variation to the resolved policy.

As we can also observe from Eqn. (23), in Eqn. (24), we also transform the term maximize −
CKLmax(πα||πα′

) into a trust region constraint E[KL(πα||πα′
)] ≤ δ. 1 As is discussed in [11], this

transformation could enable a larger step size for the optimization process and thus accelerate the
optimization process.

Even with all the transformation above, optimizing Eqn. (24) is still challenging. As we can see,
this optimization objective involves the computation of

∑
a π

α′
(aα|s) which contains the actions tied

to the new policy πα
′
. Before getting the optimization result, these actions are unknown. As a result,

computing
∑
a π

α′
(aα|s)(Aαπα(s, aα)−Aυπα(s, aα)) is intractable.

To solve this problem, we again follow the idea of TRPO, apply an important sampling estimator∑
a

πα
′
(aα|s)(Aαπα(s, aα)−Aυπα(s, aα))

=
∑
a

πα
′
(aα|s)

πα(aα|s) π
α(aα|s)(Aαπα(s, aα)−Aυπα(s, aα))

=Ea∼πα [
πα

′
(aα|s)

πα(aα|s) (A
α
πα(s, a

α)−Aυπα(s, aα))] ,

(25)

1C =
4γ(maxs,aα |Aαπα (s,aα)|−maxs,aα |Aυπα (s,aα)|)

(1−γ)2 . Given that, in each iteration, our optimization maximizes the

value function difference between the adversary and victim, we can obtain C > 0 for the current policy πα.

4

Algorithm 1: Adversarial learning algorithm.

1 Input: The adversarial policy παθ parameterized by θ, the state-value function V απα and V υπα ,
2 with parameters vα and vυ, respectively.

3 Initialization: Initialize θ(0), v
(0)
α and v

(0)
υ .

4 for k = 0, 1, 2, ...,K do
5 Use the current adversarial policy πα

θ(k)
to play with the victim agent with a fixed policy

πv, and collect a set of trajectories D(k) = {τi}, where i = 1, 2,, |D(k)|.
6 For each trajectory τi, compute the advantage at each time step t (t = 0, 1, 2, ..., |τi|):
7 A

α(k)
it

= r
α(k)
it + γV α(k)(o

α(k)
it+1

)− V α(k)(oα(k)it
);

8 A
υ(k)
it

= r
υ(k)
it

+ γV υ(k)(o
α(k)
it+1

)− V υ(k)(oα(k)it
),

9 where we omit the subscript πα
θ(k)

for simplicity.

10 Introduce A
α(k)
i0:|τi|

and A
υ(k)
i0:|τi|

(i = 1 : |D(k)|) into Eqn. (27) and obtain a new policy by

maximizing the objective function in Eqn. (27).

11 Update v
(k)
α and v

(k)
υ by solving argmin 1

T

∑T
t=0(V (ot)− (rt + γVold(ot+1)))2.

12 end
13 Output: The adversarial policy network παθ .

and thus transform Eqn. (24) into the form of

argmaxθ Eπα
old

[
παθ (a

α
t |st)

παold(a
α
t |st)

(Aαπold(a
α
t , st)−Aυπold(a

α
t , st))] ,

s.t. Est∼παold [KL(παold(·|st)||παθ (·|st))] ≤ δ .
(26)

As we can observe from the equation above, the expectation does not rely upon the actions pertaining to
the new policy (παθ) but those tied to the old one (παold). To learn an adversarial policy, we can optimize
this objective function by using the algorithm introduced in TRPO [11]. However, in order to further
improve the efficiency and effectiveness of the learning process, we follow the PPO algorithm [12],
apply the clipped ratio operation, and obtain the following optimization function

argmaxθ E(aαt ,st)∼π
α
old

[min(clip(ρt, 1− ε, 1 + ε)Aαt , ρtA
α
t)−min(clip(ρt, 1− ε, 1 + ε)Aυt , ρtA

υ
t)] ,

ρt =
παθ (a

α
t |st)

παold(a
α
t |st)

, Aαt = Aαπα
old

(aαt , st), A
υ
t = Aυπα

old
(aαt , st) .

(27)

In this work, we use this equation as our ultimate objective function and follow the procedure below
to resolve this objective. Algorithm 1 shows our proposed adversarial learning algorithm. Specifically,
we first approximate the corresponding state-value functions by using two deep neural networks, at the
time step t, each of which takes as input the adversarial observation oαt and outputs the approximated
value for the state-value function V αt and V υt . Second, we compute the parameters of these two networks
by solving the optimization function in line 11. With the parameters resolved, we further update the
adversarial policy network by solving the optimization function in Eqn. (27). In each training iteration,
we gather a set of training trajectories by using the current adversarial agent to play with the fixed
victim agent. By using the collected trajectories, we update the adversarial policy network and the
networks pertaining to the two state-value functions. Note that, compared with the PPO algorithm
used in the state-of-art attack [4], our proposed learning algorithm trains one additional value function
and solves a more complicated optimization function. This leads to extra computational cost. To
estimate this extra cost, we use the same machine (a server with 32 CPUs) to run our method and the
state-of-art attack and record their runtimes. The average runtime of our method is about 1.4X over
that of the existing attack (e.g., 20 hours vs. 16 hours on the You-Shall-Not-Pass game, 32 hours vs.
23 hours on the Kick-And-Defend game). Considering the significant improvement in exploitability,
we believe that this amount of extra cost is acceptable.

5

(a) Kick And Defend. (b) You Shall Not Pass. (c) Sumo Humans. (d) Sumo Ants. (e) StarCraft II.

Figure S1: The snapshots of the two-player games selected for our experiment. The first four games
are from MuJoCo game zoo and the last one is StarCraft II.

S5 Implementation and Experiment Setups

S5.1 Implementation and Hyper-parameter selection

We implemented our learning algorithm based on the TensorFlow [1] and Stable Baselines [7] pack-
ages. We implemented the baseline attack [4] based on the code released by the authors: https:

//github.com/HumanCompatibleAI/adversarial-policies. We also implemented the game envi-
ronment wrappers based on the OpenAI Gym (i.e., https://gym.openai.com/), Multi-agent Com-
petition (i.e., https://github.com/openai/multiagent-competition), as well as PySC2 Exten-
sion [13] packages.

In the following, we specify the choices of hyper-parameters for our attack and the state-of-art
attack [4]. Both attacks have two sets of hyper-parameters: policy network/value function architec-
tures and learning algorithm hyper-parameters (e.g., clipping parameter ε, discount factor γ, learning
rate). To ensure a fair comparison, we adopted the same set of hyper-parameters in these two at-
tacks. To be specific, for the adversarial policy network/state-value function architecture, we followed
the choice in [4] and set them as Multilayer Perceptron with different layers for different games.
The details of the network architectures can be found in https://github.com/HumanCompatibleAI/

adversarial-policies. Regarding the learning algorithm hyper-parameters, we also used the de-
fault choice of the state-of-art attack [4]. The exact values are also shown in https://github.com/

HumanCompatibleAI/adversarial-policies. Regarding the adversarial retraining experiments, we
directly retrained the original victim agents with their original policy network/state-value function
architectures and the same set of training hyper-parameters used in the attack experiments.

For the StarCraft II game, we also used the same set of hyper-parameters for these two attacks.
Specifically, we directly adopted the default choices released by the PySC2 Extension platform, upon
which we train the RL agents. The network architectures are also Multilayer Perceptrons. The
detailed network architectures and the value of the training hyper-parameters can be found in https:

//github.com/Tencent/TStarBot1. It should be noted that compared to state-of-the-art attack, the
only additional hyper-parameters introduced by our attack is the weight between the first and second
term in our learning objective function. We varied the weight of the second term between [1, 4] and
found that this variation imposes only a minor change upon the exploitability and transferability of
our attack. As such, we gave these two terms the equal weight in our experiments.

S5.2 Experiment Setups

Game selection & obtaining victim agents. We select five games for our experiments, including
four robotic games from MuJoCo game zoo [15] and one real-time strategy game – StarCraft II [16].
Researchers commonly adopt these games in academia and industry to evaluate reinforcement learning
algorithms in a two-player game context (e.g., [2, 4, 6, 13]). For each of the games, researchers have
released many benchmark game bots [2, 16]. Concerning the bots designed for MuJoCo games, they
are all trained through DRL. However, the policy networks used in the bots are different (e.g., “Sumo-
Humans” and You-Shall-Not-Pass” use LSTM and an MLP as their policy networks, respectively). In
this work, we use the following criteria to select our victim agent. First, we train an adversarial agent
by using an existing technique [4]. Then, we use it to play with each of the agents and record the
winning rate. For the agent demonstrating the highest winning rate against the adversary, we choose

6

https://github.com/HumanCompatibleAI/adversarial-policies
https://github.com/HumanCompatibleAI/adversarial-policies
https://gym.openai.com/
https://github.com/openai/multiagent-competition
https://github.com/HumanCompatibleAI/adversarial-policies
https://github.com/HumanCompatibleAI/adversarial-policies
https://github.com/HumanCompatibleAI/adversarial-policies
https://github.com/HumanCompatibleAI/adversarial-policies
https://github.com/Tencent/TStarBot1
https://github.com/Tencent/TStarBot1

it as the victim agent of that game. For the agent with the second-highest winning rate, we select it
as a regular agent for evaluating the transferability of our adversarial agent and the generalizability
of our retrained victim agent. It should be noted that we compute the winning rate by having the
corresponding agent play with its opponent for 100 rounds and reporting the number of its wins. It
should also be noted that for the asymmetric games “You-Shall-Not-Pass” and “Kick-And-Defend”,
we select the runner and kicker as the victim agent, respectively.

Regarding the real-time strategy game StarCraft II, the game vendor, and their collaborators release
seven bots indicating different master levels. (i.e., level-1 to level-7 represents amateur to elite). These
bots take actions under the guidance of different sets of pre-defined rules but not a policy network
trained with an RL algorithm. As a result, we follow the method proposed by DeepMind [3], use the
PPO algorithm to prepare two game agents, and ensure both of our game agents could demonstrate
the decisive winning rates (i.e., > 94%) against all the rule-based agents. In this work, we employ one
agent as the victim agent and the other as the regular agent for the StarCraft game. In the following,
we provide a more detailed description of each of the games mentioned above. Upon the acceptance
of this work, we will release our source code and all the agents/environments used for our evaluation.

MuJoCo–Kick And Defend. This is a soccer penalty shootout, in which the kicker (i.e., the blue
humanoid robot in Figure 1(a)) intends to shoot the ball into the net (i.e., the grey region on the
red line in Figure 1(a)), whereas the defender (i.e., the red humanoid robot in Figure 1(a)) prevents
the kicker from scoring the goal. A successful scoring gives the kicker +1000 reward and the defender
opponent -1000 reward. On the contrary, A successful defending gives the defender +1000 reward and
the kicker -1000 reward. The defender is awarded an additional +500 reward if it saves a penalty
and establishes certain desired behaviors. However, if the defender moves out of a defined goalkeeping
region during a game, it gets a punishment of -1000 reward, and the game will end as a draw. Note
that, in this game, a game episode exceeding the maximum time is treated as a successful defending.

MuJoCo–You Shall Not Pass. As is illustrated in Figure 1(b), the two agents in this game start
by facing each other. Then, the blue humanoid robot (i.e., runner) starts to run towards the finish
line (i.e., indicated by the red line in Figure 1(b)). Meanwhile, the red humanoid robot (i.e., blocker)
attempts to block the blue robot from reaching the finish line. If the red robot successfully stops its
opponent and it keeps standing till the end of a game, it could receive +1000 reward. If it blocks its
opponent but falls into the ground, it gets 0 reward. In both cases, the blue robot gets -1000 reward.
On the contrary, if the blue robot reaches the finish line, it receives +1000 reward, and the red robot
gets -1000 reward.

MuJoCo–Sumo Humans and Sumo Ants. In both games, the robots are randomly initialized
at different positions on the grey round arena in Figure 1(c) and 1(d). Then, they start to move and
push each other. One of the agents wins if it knocks its opponent into the ground or pushes it out
of the arena. The winner receivers +1000 reward, and the loser gets -1000 reward. If one agent falls
from the arena without contacting its opponent or the game exceeds the maximum time, the game
ends with a tie. Different from the games mentioned above, where the agent receives 0 reward in a tie
game, in Sumo games, both agents get a penalty of -1000 reward for a draw. As is shown in Figure 1(c)
and 1(d), the only difference between Sumo Humans and Sumo Ants is the shape of the robots. Note
that, different from the two games introduced above, the agents are symmetric in the Sumo games.

StarCraft II. As is depicted in Figure 1(e), the base of each player is randomly placed at a corner on
the map. Then, the players start to take action according to their strategies. The goal for each player
is to defeat its opponent within a limited time. A game exceeding the time limit ends as a tie. In this
paper, we train the reinforcement learning agents (players) on the PySC2 Extension platform released
by [13]. To be specific, it designs 165 macro actions for an agent, each of which is a combination of
the original operations in StarCraftII games. These macro actions can be categorized into five types –
collecting resources, constructing buildings, producing workers and solders, upgrading technology, and
combating. More details about the macro actions can be found in [13]. At the end of a game, each
agent receives a reward based on the game result: 1 (win), 0 (tie), and -1 (lose). During the game,
they also receive some additional rewards based on the number of enemies they have killed and the
amount of resources they collected. Similar to [13], we consider a two-player competitive full-game in
our experiments, in which both players belong to Zerg. Training an RL agent on a real gaming map

7

Kick And Defend Sumo Ants

 0 1.5 2.5 3.5 0 1.5 2.5 3.5

50

0

80
100 Starcraft II

W
in

ni
ng

 R
at

e
(%

)

 0 2.5 5.0 7.5 10.5

40

You Shall Not Pass

73

 0 1.5 2.5 3.5

 Sumo Humans

20
 0 1.5 2.5 3.5

59 51

98

 Iteration (1e7) Iteration (1e7) Iteration (1e7) Iteration (1e7) Iteration (1e5)

Our attack Minimization attack Attack without monotonic property

(a) The adversarial winning rates. Note that the green line in StarCraft II is overlapped with the blue line.

Kick And Defend Sumo Ants

 0 1.5 2.5 3.5 0 1.5 2.5 3.5

50

0

81
100 Starcraft II

N
on

-lo
ss

 R
at

e
(%

)

 0 2.5 5.0 7.5 10.5

59

98

43

86
You Shall Not Pass

73

 0 1.5 2.5 3.5

 Sumo Humans

 0 1.5 2.5 3.5

88

 Iteration (1e7) Iteration (1e7) Iteration (1e7) Iteration (1e7) Iteration (1e5)

98

(b) The adversarial non-loss rates. The winning+tie rate of minimization attack is always zero in StarCraft II.

Figure S2: The performance comparison of adversarial agents trained with our attack and other
two comparison methods: the attack that only minimizes the victim value function indicated by
“Minimization attack” (i.e., green lines and shadows in the figure) and the attack without monotonic
property (i.e., blue lines and shadows in the figure).

Table S1: Victim agents’ performances against our adversarial agents before retraining.
Kick And Defend You Shall Not Pass Sumo Humans Sumo Ants StarCraft II

Winning (%) 25.0 30.0 30.0 15.0 2.0
Non-loss (%) 26.0 30.0 63.0 97.0 2.0

requires a large amount of time and computational resources. It takes [13] about two days and more
than 3,000 CPUs to train an agent in a real gaming map. Due to limited computation resources, we
use a smaller map designed specifically for training RL agents [16] rather than the real gaming maps.
As is demonstrated in [6], the results of the smaller maps can be generalized to the real one by training
the agents for a longer time.
(Re)training & performance quantification. From Algorithm 1, we could quickly note that, in
each of the training iterations, our adversarial agent interacts with the victim, collects trajectories,
and updates its policy network accordingly. To reduce the impact of state randomness (e.g., the
agent’s initial position on the map and the probabilistic state transitions) upon our adversarial agent’s
performance, we follow the previous research [2, 4] and repeat each experiment six times by randomly
selecting different initial states. With this setup, we report the average performance of our adversarial
agents as well as their performance variance. Also, it should be noted that the algorithm updates our
policy at each iteration. Therefore, we report the average performance of an adversarial agent every
time its policy is updated. In our training process, we keep updating our adversarial agent iteratively
until the agent performance converges. For all MuJoCo games, in the training process, the adversarial
agent performance converges after 35 million iterations. For StarCraft II, it plateaus after 1.05 million
iterations. As we will discuss below, we also design an experiment to evaluate the effectiveness of
adversarial retraining for victim agents. For MuJoCo and StarCraft games, in the process of victim
agent retraining, agent performance stays stable after 10 million and 2.2 million iterations, respectively.
Similar to the setup for learning an adversarial agent, when retaining a victim agent, we follow the same
setup process, which repeats our experiment for six times and reports average performance accordingly.

S6 Additional Experiments.

Significance of performance difference. Section 4.1 visualizes the winning rate comparison
between our adversarial agents and that obtained by the baseline approach. Here, we also conduct

8

Kick And Defend Sumo Ants

 0 1.5 2.5 3.5 0 1.5 2.5 3.5

50

0
19

100 Starcraft II
W

in
ni

ng
 R

at
e

(%
)

 0 2.5 5.0 7.5 10.5
 2

14

You Shall Not Pass

 0 1.5 2.5 3.5

 Sumo Humans

 0 1.5 2.5 3.5
12

 Iteration (1e7) Iteration (1e7) Iteration (1e7) Iteration (1e7) Iteration (1e5)

27

Figure S3: The changes in the winning rates of victim agents when training our adversarial agents
against them.

Table S2: Mean, std and the p-value of the winning rate diff.
Kick And Defend You Shall Not Pass Sumo Humans Sumo Ants StarCraft II

Mean/Std (%) 8.2/2.8 24.1/9.4 14.6/9.0 37.5/6.2 (Non-loss rate) 56.9/13.2
P-value 0.002 0.003 0.007 <0.001 (Non-loss rate) 0.002

a statistical measure on the winning rate difference between our attack (so) and the baseline (sb).
Specifically, we first compute their diff (D = so − sb) in each run. Then, we compute the mean, std,
and the p-value of the paired t-test. For the t-test, our null hypothesis is H0 : E[D] ≤ 0. If p-value is
larger than an empirical threshold (e.g., 0.01), we accept H0, indicating our method cannot outperform
the baseline. The results in Table S2 indicate a rejection of H0, confirming our method’s superiority
over the baseline approach.

Our attack vs. other comparison methods. In this experiment, we compare our attack with two
other methods of training an adversarial agent. We first consider an adversarial learning algorithm
that optimizes a similar objective with our attack but without monotonic property. As is discussed in
Section 3.2, a trivial way to solve the our proposed objective function is to approximate the second
term in our learning objective with a DNN Gυπα(·) and combine it with the TRPO objective function
(i.e., Mα

πα(·)). By maximizing this approximation of the objective function i.e., Mα
πα(·)−Gυπα(·)) with

stochastic gradient ascent, one could solve an adversarial policy that shares a similar learning goal with
our attack. However, this method cannot guarantee a monotonical increase in the difference between
the expected total rewards of the adversarial agent and the victim agent. In this experiment, we apply
this trivial solution to the selected games and compare the performance of the trained agent with the
adversarial agent prepared by our attack.

We also compare our attack with another method that utilizes only the second term in our final
learning objective function as the objective function (i.e., argmaxθ −E[min(clip(ρt, 1−ε, 1+ε)Aυt , ρtAυt)]).
Recall that our final learning objective function contains two objectives. The first is to maximize the
expected total reward of the adversarial agent, whereas the second is to minimize that of the victim.
By setting up this experiment, we study the effect of the second objective upon our attack against the
victim because intuition suggests the minimization of victim reward alone could also downgrade the
performance of the victim and thus lead the potential victory of the adversary.

While this objective is distinct from that of (Gleave et.al 2020), it is my impression that the
approach of (Gleave et.al 2020) is subtly mischaracterized in that it was meant to train policies which
are adversarial to a particular policy (in that they minimize the victim’s reward), and not self interested
(in the sense that they maximize their own reward). In the zero-sum environments these correspond
very closely, but in the Starcraft II environment it seems that the suitable baseline would not be to
train on the adversary’s environment reward, but on the victim’s environment reward. This seems to
be a reasonable model of “adversarial behavior” even in general-sum games, but many applications
it would be unrealistic (for instance adversarial cars following this model would crash into the victim
with no regards to their own safety). Changing this aspect of the paper not only would be a more
accurate reflection of prior work, but would likely clarify the difference between this approach and prior
work. To further clarify this difference I would suggest to give the new objective a name that is not
”adversarial” as it does not follow the typical usage of that framing. You use ”hostile” at one point,
which could be a suitable replacement as it does not imply that the agent is directly in opposition to
the victim.

9

Kick And Defend
Generalizability Robustness

 Sumo Ants

 0 50 100 0 50 100

50

0

100 Starcraft II
W

in
ni

ng
 R

at
e

(%
)

 0 50 100
 2

You Shall Not Pass

59

 0 50 100

 Sumo Humans

12
 0 50 100

27

81

45

 Adv. proportion (%) Adv. proportion (%) Adv. proportion (%) Adv. proportion (%) Adv. proportion (%)

12

41
21

(a) The winning rates of the retrained victim agents.

Kick And Defend Sumo Ants

 0 50 100 0 50 100

50

0

100 Starcraft II

N
on

-lo
ss

 R
at

e
(%

)

 0 50 100
 2

You Shall Not Pass

59

 0 50 100

 Sumo Humans

49

 0 50 100

27

92

55

 Adv. proportion (%) Adv. proportion (%) Adv. proportion (%) Adv. proportion (%) Adv. proportion (%)

59

98

22

(b) The non-loss rates of the retrained victim agents.

Figure S4: The performance of the victim agents retrained with different proportions of nor-
mal/adversarial episodes in the retraining episodes. The solid blue lines represent the average winning
(plus tie) rates when playing with our adversarial agent (indicated by “robustness”). The solid red
lines represent the average winning (plus tie) rates when playing with the second-strongest regular
agent (indicated by “generalizability”). The blue and red dash lines represent the robustness and
generalizability of the victim agent before the adversarial retraining, respectively. The x-axis label
“Adv. proportion” denotes the proportions of adversarial episodes.

We conducted an experiment making adversary focus on minimizing victim reward without caring
its own. Supplementary S6 shows the results (minimization attack in Fig. S2). We found, sometimes,
this minimization method works but can’t outperform ours. For StarCraft II, the minimization method
completely fails. This aligns with the reviewer’s thoughts. We will emphasize this point in the next
version.

Figure S2 shows the performance of the adversarial agent obtained by our attack and the two
comparison methods introduced above. In Figure S2, we can first observe that, without the monotonic
guarantee, the adversarial winning rate dramatically drops on all of the five games. In all the games
except “You-Shall-Not-Pass”, the attack without monotonicity performs even worse than the state-of-
art attack [4]. This result shows that, without the monotonic guarantee, the newly added minimization
term often imposes even a negative impact upon the adversarial learning process and thus result
in an adversarial policy with a weaker exploitability than that obtained by the attack without the
minimization term. It should be noted that, in the complicated StarCraft II game, the learning process
completely fails, resulting in zero winning plus tie rate. This indicates that enabling a monotonic
guarantee is especially crucial for sophisticated games.

As we can also observe from Figure S2, by taking only the minimization into account alone, the
adversarial agents trained do not demonstrate a similar winning rate as our proposed method. However,
as is shown in Figure 2(b), they generally exhibit a powerful ability to prevent the victim from winning
the game. As we can observe from the games “Sumo Ants and Humans”, the ability to downgrade the
winning rate of the victim is almost as same as or even better than our proposed method. It indicates
that the expected reward minimization could play a critical role in restricting the victim agent’s win.

However, from Figure S2, we can also observe the minimization alone does not make any significant
difference for StarCraft game. It can barely bring any game wins or ties. We believe the reason is
the design of the game. At the beginning of the StarCraft game, the game engine starts both agents
at two different corners on a large map. As such, an adversarial agent in the StarCraft game cannot
quickly interact with the victim, influence its actions, and thus curtail the victim’s reward collection.
Instead, to prevent the victim from collecting resources and building up a strong army, the adversarial
agent has to first spend time exploring the map and navigating to the base station of the victim. In
this period, the victim usually has already constructed an army which is sufficiently strong to beat

10

intruders. Using our approach, which combines both minimizing victim’s reward and maximizing the
adversarial reward, we can train an agent to have the ability first to gather resources to build up an
army and then intervene in the army construction of the victim. With this learned policy, we can
eventually obtain decisive wins.

Another point regarding the minimization attack is that, compared to the baseline approach, the
policy trained by this attack is more likely to be adversarial. This is because rather than being
self-interested by maximizing its own reward, the adversarial agent focuses on disturbing the victim
agent. However, this attack can be unrealistic in many applications where self-interest is essential
for obtaining a feasible policy (e.g., StarCraft and adversarial self-driving cars – following this model
would crash into the victim without considering their own safety).

Adversarial retraining with different episode splits. In Section 4.2, we follow the setup in [4]
and set the adversarial and normal episodes evenly when conducting the adversarial retraining against
our attack. In this experiment, we study the influence of episode split upon the retraining performance.
Specifically, we vary the proportion of the adversarial episodes from 0.0% ∼ 100.0% by increasing 10%
each time and retrain the victim agent by using each episode split. Figure S4 shows the robustness
and the generalizability of the victim agent retrained under these settings. As we can first observe
from the figure, overall, a higher proportion of adversarial episode enables better robustness, but worse
generalizability. As is also shown in the figure, adversarial retraining has different effects on different
games. For example, in You-Shall-Not-Pass and Kick-And-Defend, the adversarial retraining always
improves the robustness of the retrained victim agent, even with only 10% of adversarial episodes. It
should be noted that, if one intends to select a setting, where both the robustness and generalizability
are improved, different games will give different results. This indicates there is no universal optimal
episode split, and the user has to find the best solution for each game individually. It should also be
noted that, in Sumo-Ants, no matter how to vary the episode split, the robustness of the retrained
victim keeps almost unchanged, which means adversarial retraining cannot robustify the victim agent
against our attack. This result supports that, in this game, our adversarial policy exploits the game
unfairness rather than the weakness of the opponent policy.

 Kick and You Shall Sumo Sumo Star
 Defend Not Pass Humans Ants CraftII

ExistingT ExistingV
Our Zoo

(a) GMM trained on the victim activations
when playing against a regular agent.

(b) GMM trained on the victim activations
 when playing against the existing attack.

 Kick and You Shall Sumo Sumo Star
 Defend Not Pass Humans Ants CraftII

ZooT ZooV
Our Existing

M
ea

n
Lo

g
Pr

ob
ab

ili
ty

 200

 200

 200

 200

 400

 0
 0

− −

Figure S5: The average GMM log likelihood of the victim
activations when playing against different opponents. Fig-
ure (a) shows the results of using the victim activations col-
lected by playing against a regular agent to train the GMM.
“ZooT” and “ZooV” represents the training/validation ac-
tivations. “Our” and “Existing” represents the activations
collected when playing against our attack and the existing
attack. Figure (b) shows the results of training the GMM
with the victim activations collected by playing against the
existing attack (“ExistingT” and “ExistingV” are the training
and testing set; “Our” and “Zoo” are our attack and regular
agent).

Adversarial Policy Behavior Anal-
ysis. In addition to drawing the demo
videos, we also follow [4] and conducts
two additional experiments on the se-
lected games to analyze the behavior
of our adversarial policies. Specifically,
we first mask a victim agent (i.e., zero
out the part of the victim observa-
tion that corresponds to the adver-
sarial position) and play it with our
adversarial agent and that obtained
by the existing attack in the corre-
sponding game. Note that the adver-
sarial agents are trained against the
original unmasked victims. Table S3
records the victim’s winning and non-
loss rate before and after masking. As
we can first observe from the Table,
similar to the findings in [4], the vic-
tim winning rates against both attacks
increase dramatically in the You-Shall-
Not-Pass and Kick-And-Defend game.
This result also matches our observa-
tions from demo videos that an adversarial agent fails a victim by triggering adversarial observations
rather than winning in a regular way. However, as is shown in Section 4, despite establishing similar
adversarial behaviors, our adversarial agent has a stronger exploitability than that obtained by the

11

Table S3: The victim winning/non-loss rates against our adversarial agents before and after masking.
Kick And Defend You Shall Not Pass Sumo Humans SumoAnts StarCraft II

Our attack
Before masking

Winning (%) 14.0 26.0 22.0 15.0 1.0
Non-loss (%) 14.0 26.0 53.0 86.0 2.0

After masking
Winning (%) 94.0 98.0 25.0 13.0 4.0
Non-loss (%) 94.0 98.0 67.0 87.0 24.0

Existing attack
Before masking

Winning (%) 45.0 48.0 34.0 57.0 18.0
Non-loss (%) 45.0 48.0 65.0 91.0 64.0

After masking
Winning (%) 97.0 97.0 12.0 37.0 65.0
Non-loss (%) 97.0 97.0 68.0 95.0 98.0

Table S4: The winning rates of our adversarial agents against the mediocre and well-trained victims.
Kick And Defend You Shall Not Pass Sumo Humans Sumo Ants StarCraft II

Adv. winning rate
Against mediocre victims (%) 88.0 93.0 55.0 86.0 (Non-loss rate) 98.0

Against well-trained victims (%) 70.0 77.0 50.0 84.0 (Non-loss rate) 90.0

state-of-art approach. We also notice that masking almost has no impact upon our attack in the
Sumo-Ants game, which further confirms that our adversarial agent exploits the game unfairness in
this game. In addition, our attack establishes lower adversarial winning rate drop than the existing
attack on the Starcraft II games. This confirms that our attack has a stronger exploitability than
the existing attack on this sophisticated game. This may also indicate that our attack fails a victim
via a stronger policy rather than triggering adversarial observations. Last but not least, we notice
that masking even increases the adversarial winning rate of the existing attack on Sumo-Humans and
Sumo-Ants.In [4], Gleave et al. also has the similar observation in their experiments. We suspect this
is caused by the specific game rules of these two games. In future work, we will take a more closer look
into the game rules together with the agent behaviors and find out the reasons behind this result.

Second, we collect the activations of the victim policy when playing with three different opponents:
itself (a regular agent), our adversarial agent, and the adversarial agent obtained by the existing attack.
We then follow the setup in [4] and use GMM and t-sne to demonstrate the differences among these
sets of activations. Regarding GMM, we train two models with the activations collected from self-
playing and playing against the existing attack. Then, we test these two models with these three sets
of activations. The results are shown in Fig. S5 and Fig. S8. As we can first observe from these figures,
on MuJoCo games, the results are aligned with our observations from the demo videos. That is, except
for Sumo-Ants, our method exploits the similar weakness in victim policies with the existing attack.
Regarding the StacrCraft II game, Fig. S5 and Fig. S8 shows that the victim agent demonstrates
substantially different behaviors when playing against our adversarial agent and that obtained by the
existing attack. Together with the attack performance in Fig. 1 and Table S3, these results indicate
our attack obtains an adversarial policy that exploits different and more threatening weakness than
the existing attack on this sophisticated game.

Attacking a mediocre victim. As is shown in Supplementary S5.2, the victim agents used in
our experiments are well-trained agents. Here, we show that our attack could also demonstrate its
effectiveness even if we train our adversarial agents against mediocre agents. Specifically, We first
train a mediocre agent on each game by running fewer self-play iterations. The average winning rate
of these agents against the well-trained victims is 18%, confirming their mediocre performances. Then,
we train our adversarial agent against these agents and test it against the mediocre victim and the
well-trained victim. Table S4 shows the attack performances. We observe that our attack is effective
against mediocre & well-trained victims even if the adversary is pitched on mediocre.

Attacking a victim that varies its policy. In our evaluation, we fix the victim agents. Here,
we conduct an initial exploration of our attack’s effectiveness against a victim that varies its policy.
Specifically, we train our attack with a victim that encodes two well-trained self-play policies and plays
each one with an equal probability in each game round. Fig S6 shows the attack performance. The
result confirms our attack’s effectiveness against this dynamic victim. Our future works will test more
non-fixed victims.

12

Table S5: The adversarial agent’s non-loss rate against the victim agent and another regular agent.
Kick And Defend You Shall Not Pass Sumo Humans Sumo Ants StarCraft II

Our attack
Victim (%) 91.0 89.0 94.0 89.0 98.0

Regular agent (%) 70.0 60.0 82.0 88.0 92.0

Baseline attack
Victim (%) 83.0 84.0 93.0 61.0 64.0

Regular agent (%) 60.0 64.0 74.0 45.0 58.0

S7 Attack Transferability

We also compare the transferability of our attack with that of the baseline attack [4]. Specifically,
given a game, we first take a regular agent released in [2]. This agent is different from the on used
for adversarial policy training. Then, we set up the regular agent to play with the adversarial agent
learned through our method and that learned through the baseline approach [4]. In this experi-
ment, we set each adversarial agent to play with the regular agent for 100 rounds and report the
adversarial agent’s winning rate. We compare the adversary’s winning rate with the winning rate
observed when the adversary plays with the victim it trains against. Through this comparison, we
can measure the exploitability variation after transferring an adversarial agent to attack a different
target agent. Recall that for each game, we randomly select six initial states and thus obtain six
adversarial agents. In this experiment, we report the transferability of the strongest adversarial agent.

W
in

ni
ng

 R
at

e
(%

)

 0 1.5 2.5 3.5

Win

80

 Iteration (1e7)

50

0 N
on

-lo
ss

 R
at

e
(%

)

 0 1.5 2.5 3.5

Win + Tie

81

 Iteration (1e7)

50

0

Figure S6: Our attack performance against a dy-
namic victim in the Kick And Defend game.

Table S5 shows the transferability of our attack
and that of the baseline attack [4]. First, we ob-
serve that both methods establish a certain level
of transferability on the five games. Compared
with the baseline attack, our attack demonstrates
a slightly better transferability. We believe this
is because of the stronger exploitability of our
attack. As is also shown in the table, our adver-
sarial policy in Sumo-Ants establishes the highest
transferability. As is mentioned above, this pol-
icy exploits the game unfairness rather than the
weakness of a specific victim policy. As such, it is less relevant to the opponent policy and thus has
a stronger transferability. On the contrary, as for the adversarial policy that disturbs the victim ob-
servation via its action, its performance will be jeopardized when transferred to a different regular
policy.

S8 Our attack vs. baseline in zero-sum setting

Our attack Existing attack
Win

W
in

ni
ng

 R
at

e
(%

)

 0 6.0 12.0 18.0

98

 Iteration (1e5)

98
Win + tie

 Iteration (1e5)
 0 6.0 12.0 18.0

50

0 N
on

-lo
ss

 R
at

e
(%

)

50

0

Figure S7: Performance comparison in a zero-sum
game.

In Section 4, we show the advantages of our at-
tack over the baseline [4] on real-world nonzero-
sum games. Here, we demonstrate the perfor-
mance of both methods in a zero-sum setting.
Specifically, we first modify the reward design of
the StarCraft II and make it a zero-sum game. 2

To achieve this, we remove all the intermediate
rewards and only preserve the rewards related to
the game results, i.e., 1 (win), 0 (tie), and -1
(lose). We then apply both our attack and the
baseline to train an adversarial agent under the
modified reward design and record the adversar-
ial winning rate every time its policy is updated. Figure S7 shows the results of six runs. As we can
observe from the figure, the adversarial agent trained by the baseline [4] demonstrates a similar winning
rate with our attack. In zero-sum games, maximizing adversarial reward will automatically minimize

2The MuJoCo games cannot be transformed into zero-sum settings, because the agent is not able to pick up basic
behaviors, such as standing and running, without the intermediate rewards.

13

the victim reward. As such, our approach’s adversarial agent will demonstrate the same performance
as that learned by the baseline [4] in this setting. It should be noted that the adversarial agent trained
by the baseline in the zero-sum setting performs better than that in the nonzero-sum setting (Fig. 1).
As is discussed above, this is because the state-of-art attack is less effective in nonzero-sum settings.
It should also be noted that our learning converges much faster in the nonzero-sum setting (Fig. 1:
0.8M iterations) than it in the zero-sum setting (1.6M), which demonstrates the benefit brought by the
intermediate rewards. In most of the two-player games, game developers design intermediate rewards
to help RL agent training.

References

[1] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for large-
scale machine learning. In Proc. of OSDI, 2016.

[2] Trapit Bansal, Jakub Pachocki, Szymon Sidor, Ilya Sutskever, and Igor Mordatch. Emergent
complexity via multi-agent competition. In Proc. of ICLR, 2018.

[3] DeepMind. Alphastar: Mastering the real-time strategy game starcraft ii. https://en.

wikipedia.org/wiki/AlphaStar_(software), 2017.

[4] Adam Gleave, Michael Dennis, Neel Kant, Cody Wild, Sergey Levine, and Stuart Russell. Ad-
versarial policies: Attacking deep reinforcement learning. In Proc. of ICLR, 2020.

[5] David A Levin and Yuval Peres. Markov chains and mixing times. American Mathematical
Society., 2017.

[6] Ruo-Ze Liu, Haifeng Guo, Xiaozhong Ji, Yang Yu, Zhen-Jia Pang, Zitai Xiao, Yuzhou Wu, and
Tong Lu. Efficient reinforcement learning with a thought-game for starcraft. arXiv preprint
arXiv:1903.00715, 2019.

[7] openai. Stable baselines. https://stable-baselines.readthedocs.io/en/master/, 2018.

[8] Jan Peters, Katharina Mulling, and Yasemin Altun. Relative entropy policy search. In Proc. of
AAAI, 2010.

[9] Jan Peters and Stefan Schaal. Natural actor-critic. Neurocomputing, 2008.

[10] David Pollard. Asymptopia: an exposition of statistical asymptotic theory. 2000. URL
http://www. stat. yale. edu/pollard/Books/Asymptopia, 2000.

[11] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In Proc. of ICML, 2015.

[12] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[13] Peng Sun, Xinghai Sun, Lei Han, Jiechao Xiong, Qing Wang, Bo Li, Yang Zheng, Ji Liu, Yong-
sheng Liu, Han Liu, et al. Tstarbots: Defeating the cheating level builtin ai in starcraft ii in the
full game. arXiv preprint arXiv:1809.07193, 2018.

[14] Sebastian Thrun. Monte carlo pomdps. In Proc. of NeurIPS, 2000.

[15] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In Proc. of ICIRS, 2012.

[16] Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha Vezhnevets,
Michelle Yeo, Alireza Makhzani, Heinrich Küttler, John Agapiou, Julian Schrittwieser, et al.
Starcraft ii: A new challenge for reinforcement learning. arXiv preprint arXiv:1708.04782, 2017.

14

https://en.wikipedia.org/wiki/AlphaStar_(software)
https://en.wikipedia.org/wiki/AlphaStar_(software)
https://stable-baselines.readthedocs.io/en/master/

(a) Kick and Defend. (b) You Shall Not Pass. (c) Sumo Humans.

(d) Sumo Ants. (e) StarCraft II.

Figure S8: t-SNE visualizations of the victim activations when playing against different opponents
in MuJoCo games. The green dots are the victim activations when setting a regular agent as the
opponent. The red and blue dots indicates the victim activations when playing against our adversarial
agent and that obtained by the existing attack, respectively.

15

