
DANCE: Enhancing saliency maps using decoys

Yang Young Lu * 1 Wenbo Guo * 2 Xinyu Xing 2 William Stafford Noble 3

Abstract

Saliency methods can make deep neural network
predictions more interpretable by identifying a
set of critical features in an input sample, such as
pixels that contribute most strongly to a predic-
tion made by an image classifier. Unfortunately,
recent evidence suggests that many saliency meth-
ods poorly perform, especially in situations where
gradients are saturated, inputs contain adversar-
ial perturbations, or predictions rely upon inter-
feature dependence. To address these issues, we
propose a framework, DANCE, which improves
the robustness of saliency methods by following
a two-step procedure. First, we introduce a per-
turbation mechanism that subtly varies the input
sample without changing its intermediate repre-
sentations. Using this approach, we can gather a
corpus of perturbed (“decoy”) data samples while
ensuring that the perturbed and original input sam-
ples follow similar distributions. Second, we com-
pute saliency maps for the decoy samples and pro-
pose a new method to aggregate saliency maps.
With this design, we offset influence of gradient
saturation. From a theoretical perspective, we
show that the aggregated saliency map not only
captures inter-feature dependence but, more im-
portantly, is robust against previously described
adversarial perturbation methods. Our empirical
results suggest that, both qualitatively and quan-
titatively, DANCE outperforms existing methods
in a variety of application domains. 1

*Equal contribution 1Department of Genome Sciences, Univer-
sity of Washington, Seattle, WA, USA 2College of Information
Sciences and Technology, The Pennsylvania State University, State
College, PA, USA 3Paul G. Allen School of Computer Science
and Engineering, University of Washington, Seattle, WA, USA.
Correspondence to: Xinyu Xing <xxing@ist.psu.edu>, William
Stafford Noble <william-noble@uw.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

1The Apache licensed source code of DANCE will be available
at https://bitbucket.org/noblelab/dance.

1. Introduction
Deep neural networks (DNNs) deliver remarkable perfor-
mance in an increasingly wide range of application domains,
but they often do so in an inscrutable fashion, delivering pre-
dictions without accompanying explanations. In a practical
setting such as automated analysis of pathology images, if a
patient sample is classified as malignant, then the physician
will want to know which parts of the image contribute to this
diagnosis. Thus, in general, a DNN that delivers interpreta-
tions alongside its predictions will enhance the credibility
and utility of its predictions for end users (Lipton, 2016).

In this paper, we focus on a popular branch of explana-
tion methods, often referred to as saliency methods, which
aim to find input features (e.g., image pixels or words) that
strongly influence the network predictions (Simonyan et al.,
2013; Selvaraju et al., 2016; Binder et al., 2016; Shriku-
mar et al., 2017; Smilkov et al., 2017; Sundararajan et al.,
2017; Ancona et al., 2018). Saliency methods typically rely
on back-propagation from the network’s output back to its
input to assign a saliency score to individual features so
that higher scores indicate higher importance to the output
prediction. Despite attracting increasing attention, saliency
methods suffer from several fundamental limitations:

• Gradient saturation (Sundararajan et al., 2017; Shriku-
mar et al., 2017; Smilkov et al., 2017) may lead to the
problem that the gradients of important features have
small magnitudes, breaking down the implicit assump-
tion that important features, in general, correspond to
large gradients. This issue can be triggered when the
DNN outputs are flattened in the vicinity of important
features.

• Importance isolation (Singla et al., 2019) refers to the
problem that gradient-based saliency methods evaluate
the feature importance in an isolated fashion, implicitly
assuming that the other features are fixed.

• Perturbation sensitivity (Ghorbani et al., 2017; Kinder-
mans et al., 2017; Levine et al., 2019) refers to the obser-
vation that even imperceivable, random perturbations or
a simple shift transformation of the input data may lead
to a large change in the resulting saliency scores.

In this paper, we propose a novel saliency method, Decoy-

https://bitbucket.org/noblelab/dance

DANCE: Enhancing saliency maps using decoys

enhANCEd saliency (DANCE), to tackle these limitations.
At a high level, DANCE generates the saliency score of an
input by aggregating the saliency scores of multiple per-
turbed copies of this input. Specifically, given an input
sample of interest, DANCE first generates a population
of perturbed samples, referred to as decoys, that perfectly
mimic the neural network’s intermediate representation of
the original input. These decoys are used to model the varia-
tion of an input sample originating from either sensor noise
or adversarial attacks. The decoy construction procedure
draws inspiration from the knockoffs, proposed recently by
Barber & Candès (2015) in the setting of error-controlled
feature selection, where the core idea is to generate knock-
off features that perfectly mimic the empirical dependence
structure among the original features.

In brief, the current paper makes three primary contributions.
First, we propose a framework to perturb input samples to
produce corresponding decoys that preserve the input dis-
tribution, in the sense that the intermediate representations
of the original input data and the decoys are indistinguish-
able. We formulate decoy generation as an optimization
problem, applicable to diverse deep neural network architec-
tures. Second, we develop a decoy-enhanced saliency score
by aggregating the saliency maps of generated decoys. By
design, this score naturally offsets the impact of gradient
saturation. From a theoretical perspective, we show how the
proposed score can simultaneously reflect the joint effects
of other dependent features and achieve robustness to adver-
sarial perturbations. Third, we demonstrate empirically that
DANCE outperforms existing saliency methods, both quali-
tatively and quantitatively, on three real-world applications.
We also quantify DANCE’s advantage over existing saliency
methods in terms of robustness against various adversarial
attacks.

2. Related work
A variety of saliency methods have been proposed in the
literature. Some, such as edge detectors and Guided Back-
propagation (Springenberg et al., 2014) are independent
of the predictive model (Nie et al., 2018; Adebayo et al.,
2018).2 Others are designed only for specific architectures
(i.e., Grad-CAM (Selvaraju et al., 2016) for CNNs, DeCon-
vNet for CNNs with ReLU activations (Zeiler & Fergus,
2014)). In this paper, instead of exhaustively evaluating all
saliency methods, we apply our method to three saliency
methods that do depend on the predictor (i.e., passing the
sanity checks in Adebayo et al. (2018) and Sixt et al. (2020))
and are applicable to diverse DNN architectures.

• The vanilla gradient method (Simonyan et al., 2013)

2Sixt et al. (2020) shows that LRP (Binder et al., 2016) is
independent of the parameters of certain layers.

calculates the gradient of the class score with respect to
the input x, defined as

Egrad(x;F
c) = OxF

c(x)

• SmoothGrad (Smilkov et al., 2017) seeks to reduce noise
in the saliency map by averaging over explanations of the
noisy copies of an input, defined as

Esg(x;F
c) =

1

N

N∑
i=1

Egrad(x+ gi;F
c)

where gi ∼ N(0, σ2) indicates the noise vectors.

• The integrated gradient method (Sundararajan et al.,
2017) starts from a baseline input x0 and sums over the
gradient with respect to scaled versions of the input rang-
ing from the baseline to the observed input, defined as

Eig(x;F
c) = (x−x0)×

∫ 1

0

OxF
c(x0+α(x−x0))dα

Note that input� gradient and DeepLIFT (Shrikumar
et al., 2017) are strongly related to the integrated gradient
method, as shown by Ancona et al. (2018).

We do not empirically compare to several other categories
of methods. Counterfactual-based methods work under the
same setup as saliency methods, providing explanations
for the predictions of a pre-trained DNN model (Sturmfels
et al., 2020). These methods identify the important subre-
gions within an input image by perturbing the subregions
(by adding noise, rescaling (Sundararajan et al., 2017), blur-
ring (Fong & Vedaldi, 2017), or inpainting (Chang et al.,
2019)) and measuring the resulting changes in the predic-
tions (Ribeiro et al., 2016; Lundberg & Lee, 2017; Chen
et al., 2018; Fong & Vedaldi, 2017; Dabkowski & Gal, 2017;
Chang et al., 2019; Yousefzadeh & O’Leary, 2019; Goyal
et al., 2019). Although these methods do identify meaning-
ful subregions in practice, they exhibit several limitations.
First, counterfactual-based methods implicitly assume that
regions containing the object most contribute to the predic-
tion (Fan et al., 2017). However, Moosavi-Dezfooli et al.
(2017) showed that counterfactual-based methods are also
vulnerable to adversarial attacks, which force these methods
to output unrelated background rather than the meaningful
objects as important subregions. Second, the counterfactual
images may be potentially far away from the training distri-
bution, causing ill-defined classifier behavior (Burns et al.,
2019; Hendrycks & Dietterich, 2019).

In addition to these limitations, counterfactual-based meth-
ods and our decoy-based method are fundamentally differ-
ent in three ways. First, the former seeks the minimum

DANCE: Enhancing saliency maps using decoys

 Decoy
Generator

... ...
Saliency
Methods

Original image

Pretrained network

Decoy images

Label-dependent gradients

Saliency maps of decoys

Decoy-enhanced
saliency maps

...

Patch masks(A) Original image

Decoy image

(B) Identical
 intermediate
representation

Network

Figure 1. Overview of DANCE. (A) The DANCE workflow. (B) The swapping operation between original and decoy images.

set of features to exclude in order to minimize the predic-
tion score or to include in order to maximize the prediction
score (Fong & Vedaldi, 2017), whereas our approach aims
to characterize the influence of each feature on the predic-
tion score. Second, counterfactual-based methods explicitly
consider the decision boundary by comparing each image
to the closest image on the other side of the boundary. In
contrast, the proposed method only considers the decision
boundary implicitly by calculating the gradient’s variants.
Third, unlike counterfactual images, which could potentially
be out-of-distribution, decoys are plausibly constructed in
the sense that their intermediate representations are indistin-
guishable from the original input data by design. Because
of these limitations and differences, we do not compare our
method with counterfactual-based methods.

In addition to saliency methods and counterfactual-based
methods, several other types of interpretation methods have
been proposed that either aim for a different goal or have a
different setup. For example, recent research (e.g., Ribeiro
et al. (2016); Lundberg & Lee (2017); Chen et al. (2018;
2019b)) designed techniques to explain a black-box model,
where the model’s internal weights are inaccessible. Koh &
Liang (2017) and some follow-up work (Yeh et al., 2018;
Koh et al., 2019) tried to find the training points that are most
influential for a given test sample. Some other efforts have
been made to train a more interpretable DNN classifier (Fan
et al., 2017; Zołna et al., 2019; Alvarez-Melis & Jaakkola,
2018; Toneva & Wehbe, 2019), synthesize samples that
represent the model predictions (Ghorbani et al., 2019; Chen
et al., 2019a), or identifying noise-tolerant features (Ikeno
& Hara, 2018; Schulz et al., 2020). However, due to the task
and setup differences, we do not consider these methods in
this paper.

3. Methods
3.1. Problem setup

Consider a multi-label classification task in which a pre-
trained neural network model implements a function F :

Rd 7→ RC that maps from the given input x ∈ Rd to C
predicted classes. The score for each class c ∈ {1, · · · , C}
is F c(x), and the predicted class is the one with maximum
score, i.e., argmaxc∈{1,··· ,C} F

c(x). A saliency method
aims to assign to each feature a saliency score, encoded in a
saliency map E(x;F c) : Rd 7→ Rd, in which the features
with higher scores represent higher “importance” relative to
the final prediction.

Given a pre-trained neural network model F with L layers,
an input x, and a saliency method E such that E(x;F) is a
saliency map of the same dimensions as x, DANCE operates
in two steps: generating decoys and aggregating the saliency
maps of the decoys (Figure 1A).

3.2. Decoy definition

Say that F` : Rd 7→ Rd` is the function instantiated by
the given network, which maps from an input x ∈ Rd

to its intermediate representation F`(x) ∈ Rd` at layer
` ∈ {1, 2, · · · , L}. A vector x̃ ∈ Rd is said to be a decoy
of x ∈ Rd at a specified layer ` if the following swappable
condition is satisfied:

F`(x) = F`(xswap(x̃,K)),

for swappable features K ⊂ {1, · · · , d} .
(1)

Here, the swap(x̃,K) operation swaps features between x
and x̃ based on the elements inK. In this work,K represents
a small meaningful feature set, which represents a small re-
gion/segment in an image or a group of words (embeddings)
in a sentence. Take an image recognition task for example.
Assume K = {10} and x̃ is a zero matrix, then xswap(x̃,K)
indicates a new image that is identical to x except that the
tenth pixel is set to zero. An illustrative explanation of a
swap operator is shown in Figure 1(B).

Using the swappable condition, we aim to ensure that the
original image x and its decoy x̃ are indistinguishable in
terms of the intermediate representation at layer `. Note in
particular that the construction of decoys relies solely on
the first ` layers of the neural network F1, F2, · · · , F` and
is independent of the succeeding layers F`+1, · · · , FL. As

DANCE: Enhancing saliency maps using decoys

such, x̃ is conditionally independent of the classification
task F (x) given the input x; i.e., x̃ |= F (x)|x.

3.3. Decoy generation

To identify decoys satisfying the swappable condition, we
solve the following optimization problem:

maximizex̃∈[xmin,xmax]d
∥∥((x̃− x) · s)+

∥∥
1
,

s.t.
{
‖F`(x̃)− F`(x)‖∞ ≤ ε,
(x̃− x) ◦ (1−M) = 0

(2)

Here, (·)+ = max(·, 0), and the operators ‖·‖1 and ‖·‖∞
correspond to the L1 and L∞ norms, respectively. M ∈
{0, 1}d is a specified binary mask, where Mi = 0 indi-
cates that the ith features of x and x̃ are kept the same
(realized by the constraint (x̃ − x) ◦ (1 − M) = 0).
In other words, we take x̃ and x to be indistinguishable
except for the swappable features indicated by the mask
(i.e., xswap(x̃,(1−M)) = x̃). The value of each feature in
the decoy x̃ is restricted to lie in a legitimate value range
i.e., [xmin,xmax] (e.g., the pixel values should lie in [0, 255]).
We further impose the constraint ‖F`(x̃)− F`(x)‖∞ ≤ ε,
which ensures that the generated decoy satisfies the swap-
pable condition described in Equation (1).

As illustrated in Figure 1, a population of n patch masks
are constructed subject to the principle that each swappable
patch is covered at least once. Because each swappable
patch is small (e.g., a small region/segment in an image),
assigning each patch mask to a single patch would be com-
putationally expensive. Accordingly, we aggregate multiple
patches into a combined patch mask for computational effi-
ciency (see Supplementary Section S1 for details). Empiri-
cal results suggest that DANCE is robust to the number of
patches that are aggregated into each mask (Figure 2C).

As is shown later in Section 3.4, DANCE aims to capture
the range of the saliency maps among all decoys. To achieve
this, we first need to estimate the range of values among
the decoys by estimating the range of perturbation values
that can be added to the input without violating the swap-
pable condition. In other words, we maximize the deviation
between x̃ and x from both the positive and negative direc-
tions, i.e., s = +1 and s = −1. As shown in Equation (2),
for each specified maskM, we compute two decoys—one
for the positive deviation (i.e., s = +1) and the other for
the negative one (i.e., s = −1). More details about how to
optimize Equation 2 can be found in Supplementary Section
S1.

3.4. Decoy-enhanced saliency scores

We denote the generated decoys as
{
x̃1, x̃2, · · · , x̃2n

}
,

i.e., n decoys in the positive direction and n in the neg-
ative direction. For these decoys, we then apply a

given saliency method E to yield the corresponding de-
coy saliency maps

{
E(x̃1;F), E(x̃2;F), · · · , E(x̃2n;F)

}
.

With these decoy saliency maps in hand, for each fea-
ture xi in x, we characterize its saliency score vari-
ation by using a population of saliency scores Ẽi ={
E(x̃1;F c)i, E(x̃2;F c)i, · · · , E(x̃2n;F c)i

}
. Here we de-

fine the decoy-enhanced saliency score Zi for each feature
xi as

Zi = max(Ẽi)−min(Ẽi) . (3)

Here, Zi is determined by the empirical range of the decoy
saliency scores. Ideally, important features will have large
values and unimportant ones will have small values.

3.5. Theoretical insights

In this section, we analyze the saliency score method in a
theoretical fashion. For expedience of exposition, we carry
out the theoretical analysis using the vanilla gradient as
the base saliency method. In particular, we take a convo-
lutional neural network with the ReLU activation function
as an example to discuss why the proposed interpretation
method can account for inter-feature dependence while also
improving explanatory robustness. It should be noted that,
while we conduct our theoretical analysis in the setting of
convolutional neural networks (CNNs) with a specific acti-
vation function, the conclusions drawn from the theoretical
analysis can be extended to other feed-forward neural archi-
tectures and other activation functions (See Supplementary
Section S4 for more details).

Consider a CNN with L hidden blocks, with each layer `
containing a convolutional layer with a filter of size

√
s` ×√

s` and a max pooling layer with pooling size
√
s` ×

√
s`.

(We set the pooling size the same as the kernel size in each
block for simplicity.) The input to this CNN is x ∈ Rd,
unrolled from a

√
d×
√
d matrix. Similarly, we also unroll

each convolutional filter into g` ∈ Rs` , where g` is indexed
as (g`)j for j ∈ J`. Here, J` corresponds to the index shift
in matrix form from the top-left to bottom-right element.
For example, a 3 × 3 convolutional filter (i.e., s` = 9) is
indexed byJ` = {−

√
d−1,−

√
d,−
√
d+1,−1, 0, 1,

√
d−

1,
√
d,
√
d+1}. The output of the network is the probability

vector p ∈ RC generated by the softmax function, where
C is the total number of classes. Such a network can be
represented as

m` = pool(relu(g` ∗m`−1)) for ` = 1, 2, 3, ..., L ,

o = WT
L+1mL + bL+1,

p = softmax(o) ,

where relu(·) and pool(·) indicate the ReLU and pooling
operators, m` ∈ Rd` is the output of the block ` (m0 =
x), and (g` ∗m`−1) ∈ Rd`−1 represents a convolutional
operation on that block. We assume for simplicity that the
convolution retains the input shape.

DANCE: Enhancing saliency maps using decoys

Consider an input x and its decoy x̃, generated by swapping
features inK. For each feature i ∈ K, we have the following
theorem for the decoy-enhanced saliency score Zi:
Theorem 1. In the aforementioned setting, Zi is bounded
by ∣∣∣∣∣Zi −

1

2

∣∣∣∣∣∑
k∈K

(x̃+
k − x̃−k)(Hx)k,i

∣∣∣∣∣
∣∣∣∣∣ ≤ C1 . (4)

Here, C1 > 0 is a bounded constant and Hx is the Hessian
of F c(x) on x where (Hx)i,k = ∂2F c

∂xi∂xk
. x̃+ and x̃− refer

to the decoy that maximizes and minimizes E(x̃;F c), re-
spectively. Theorem 1 implies that the proposed saliency
score is determined by the second-order Hessian ((Hx)i,k)
in the same swappable feature set. The score explicitly mod-
els the feature dependencies in the swappable feature set via
this second-order Hessian, potentially capturing meaningful
patterns such as edges, texture, etc.

In addition to enabling representation of inter-feature depen-
dence, Theorem 1 sheds light on the robustness of the pro-
posed saliency score against adversarial attack. To illustrate
the robustness improvement of our method, we introduce
the following proposition.
Proposition 1. Given an input x and the correspond-
ing adversarial sample x̂, if both |xi − x̃i| ≤ C2δi and∣∣∣x̂i − ˜̂xi

∣∣∣ ≤ C2δi can be obtain where C2 > 0 is a bounded
constant and δi = |E(x̂, F)i − E(x, F)i|, then the follow-
ing relation can be guaranteed.

|(Zx̂)i − (Zx)i| ≤ |E(x̂, F)i − E(x, F)i| . (5)

Given an adversarial sample x̂ (i.e., the perturbed x), we say
a saliency method is not robust against x̂ if the deviation of
the corresponding explanation δi = |E(x̂, F)i − E(x, F)i|
(for all i ∈ {1, 2, · · · , d}) is large. According to the propo-
sition above, we can easily discover that the deviation of
our decoy-enhanced saliency score is always no larger than
that of other saliency methods when a certain condition
is satisfied. This indicates that, when the condition holds,
our saliency method can guarantee a stronger resistance
to the adversarial perturbation. To ensure the conditions
|xi − x̃i| ≤ C2δi and

∣∣∣x̂i − ˜̂xi

∣∣∣ ≤ C2δi, we can further
introduce the corresponding condition as a constraint to
Equation (2). In the following section, without further clar-
ification, the saliency scores used in our evaluation are all
derived with this constraint imposed. The proof and in-
depth analysis of Theorem 1 and Proposition 1 can be found
in the Supplementary Section S2 and S3.

4. Experiments
To evaluate the effectiveness of DANCE, we perform exten-
sive experiments on deep learning models that target three

tasks: image classification, sentiment analysis, and network
intrusion detection. Our results suggest that that DANCE, in
conjunction with state-of-the-art saliency methods, makes
already good saliency maps even more intuitively coher-
ent. DANCE also quantitatively achieves better alignment
to truly important features and demonstrates stronger ro-
bustness to adversarial manipulation. The description of
the datasets and experimental setup can be found in the
Supplementary Section S5.

4.1. Baseline methods

We applied DANCE in conjunction with three state-of-the-
art saliency methods: vanilla gradient, integrated gradient,
and SmoothGrad. (See Supplementary Section S9 for results
from more saliency methods such as ExpGrad (Sturmfels
et al., 2020), VarGrad (Hooker et al., 2019), and Grad-CAM
(Selvaraju et al., 2016).) As claimed in Section 2, a prerequi-
site of saliency methods is the dependency on the predictor.
To confirm that the conjunction with DANCE does not vio-
late this prerequisite, we carried out a sanity check on the
ImageNet dataset. The results (Supplementary Section S6)
show that our method does indeed depend on the predictor.

One significant challenge when comparing different saliency
methods is that each method produces a raw saliency map
with its own distribution. Therefore, to facilitate a fair
comparison among all methods, we used a consistent post-
processing scheme to normalize all methods. Specifically,
we selected the top-K normalization, i.e., constructing a
binary saliency map by retaining only the top-K features
ranked by each method. We then set the saliency value of
the selected features equal to 1 and the remaining features
equal to 0. Here we chose K as the top 20% of all features,
and we show that our results are robust to variation in the
choice of K in Supplementary Section S11. It is worth men-
tioning that in this paper we do not consider another com-
mon normalization scheme, 0-1 normalization (i.e., linearly
rescaling the saliency values to the range [0, 1]), because 0-1
normalization leads to a biased estimation of the evaluation
metric (See Section 4.2).

4.2. Evaluation metric

Intuitively, we prefer a saliency method that highlights fea-
tures that align closely with the predictions (e.g., highlights
the object of interest in an image or the words indicating
the sentiment of the sentence). To measure how well a
saliency map achieves qualitative coherence, we use the
fidelity metric (Dabkowski & Gal, 2017), defined as

SF (E(·;F c),x) = − logF c(E(x;F c) ◦ x) (6)

where c indicates the predicted class of input x, and
E(x;F c) is the top-K-retained binary saliency map de-
scribed above. E(x;F c) ◦ x performs entry-wise multi-

DANCE: Enhancing saliency maps using decoys

Gradient
w/o decoy

Gradient
w/ decoys

SGrad
w/o decoy

SGrad
w/ decoys

Gradient
difference

SGrad
difference

IntGrad
w/o decoy

IntGrad
w/ decoys

IntGrad
difference

SF: 7.64 SF: 5.04 SF: 8.96 SF: 3.38 SF: 5.95 SF: 4.19Volcano

SF: 7.86 SF: 2.13 SF: 7.82 SF: 2.88 SF: 5.53 SF: 4.27Seashore
: : : : :

SF: 12.02 SF: 7.47 SF: 10.31 SF: 7.72 SF: 5.34 SF: 4.98Cliff

SF: 11.95 SF: 2.44 SF: 12.97 SF: 0.34 SF: 0.81 SF: 0.34Terrier

SF: 14.17 SF: 7.82 SF: 12.21 SF: 6.77 SF: 7.58 SF: 6.74Scotter

SF: 3.05 SF: 0.08 SF: 0.018 SF: 0.012 SF: 0.076 SF: 0.064Bustard

Fo
re

gr
ou

nd
 o

bj
ec

ts
B

ac
kg

ro
un

d
ob

je
ct

s

saliency w/ decoys - saliency w/o decoy
+1.0 -1.0

Gradient IntGrad SGrad

Without decoy

Decoys w/ range aggregation

Constant w/ range aggregation Decoys w/ mean aggregation

Noise w/ range aggregation

Fi
de

lit
y

Decoy variations:(A) (B)

patch size = 3 patch size = 5 patch size = 7 patch size = 9

Fi
de

lit
y

Number of used decoys

(C)

Figure 2. Performance evaluation on ImageNet. (A) Visualization of saliency maps on foreground and background objects. (B) Fidelity
comparison of original saliency method (i.e., “Without decoys”), our method (i.e., “Decoys w/ range aggregation”), and its alternatives:
replacing the decoy generation (Equation (2)) with constant perturbation (i.e., “Constant w/ range aggregation”) or noise perturbation
(i.e., “Noise w/ range aggregation”); replacing the decoy aggregation (Equation (3)) with mean aggregation (i.e., “Decoys w/ mean
aggregation”). See Supplementary Section S14 for more statistics about the performance differences between our method and the baselines.
(C) Performance with regard to variant patch size and different numbers of decoys.

plication between E(x;F c) and x, encoding the overlap
between the object of interest and the concentration of the
saliency map. The rationale behind this metric is that, by
viewing the saliency score of a feature as its contribution
to the predicted class, a good saliency method will high-
light more important features and thus give rise to higher
predicted class scores and lower metric values.

Note that, to guarantee a fair comparison among different
saliency methods, it is important to retain the same num-
ber of important features for evaluation. Without such a
scheme, pathologic cases such as E(x;F c) = 1 (i.e., all
saliency values equal to 1) would lead to highest fidelity
score unexpectedly, which may be particularly problematic
for alternative scheme such as 0-1 normalization.

4.3. Performance in various applications

4.3.1. PERFORMANCE ON THE IMAGENET DATASET

To evaluate the effectiveness of DANCE, we first applied
DANCE to randomly sampled images from the ImageNet
dataset (Russakovsky et al., 2015), with a pretrained VGG16
model (Simonyan & Zisserman, 2014) (See Supplementary
S7 for the applicability to diverse CNN architectures such
as AlexNet (Krizhevsky et al., 2012) and ResNet (He et al.,
2016)). The 3× 3 image patches are treated as swappable

features in generating decoys. A side-by-side comparison
(Figure 2(A)) suggests that decoys consistently help to re-
duce noise and produce more visually coherent saliency
maps. For example, the original integrated gradient method
highlights the region of the dog’s head in a scattered format,
which is also revealed by the difference plot. In contrast, the
decoy-enhanced integrated gradient method not only high-
lights the missing body but also identifies the dog’s head
with more details such as ears, cheek, and nose (See Sup-
plementary Section S13 for more visualization examples).
The visual coherence is also quantitatively supported by the
saliency fidelity score.

To further evaluate the necessity of the two steps in our
method (i.e., decoy generation and aggregation), we carried
out a control experiment by replacing each step with alter-
natives. Specifically, as alternatives to the decoy generation,
we used an image in which all pixel values are either re-
placed with a single mean pixel value or contaminated with
Gaussian white noise. For the decoy aggregation, we calcu-
lated the mean saliency score as the alternative. As shown
in Figure 2(B), our method, which incorporate both steps,
yields the best performance. This validates the effectiveness
of our two-step approach.

Thirdly, to evaluate the computational efficiency of DANCE,
we carried out a fidelity comparison with respect to the num-

DANCE: Enhancing saliency maps using decoys

N
egative sentim

ent
Positive sentim

ent

(A) (B)

SF: 0.127
SF: 0.119
SF: 0.093
SF: 0.093
SF: 0.458
SF: 0.031

most new movies have a bright sheen

most new movies have a bright sheen

most new movies have a bright sheen

most new movies have a bright sheen

most new movies have a bright sheen
most new movies have a bright sheen

Gradient w/o decoy
Gradient w/ decoys
IntGrad w/o decoy
IntGrad w/ decoys
SGrad w/o decoy
SGrad w/ decoys

Gradient IntGrad SGrad

Fi
de

lit
y

Without decoy

Decoys w/ range aggregation

Constant w/ range aggregation Decoys w/ mean aggregation

Noise w/ range aggregationDecoy variations:SF: 1.003
SF: 0.075
SF: 1.003
SF: 0.084
SF: 0.111
SF: 0.105

No movement no yuks not much of anything
No movement no yuks not much of anything
No movement no yuks not much of anything
No movement no yuks not much of anything
No movement no yuks not much of anything
No movement no yuks not much of anything

Gradient w/o decoy
Gradient w/ decoys
IntGrad w/o decoy
IntGrad w/ decoys
SGrad w/o decoy
SGrad w/ decoys

Figure 3. Results obtained from the SST dataset. (A) Visualization of saliency maps in each word, where the normalized saliency
values are shown for better distinction. (B) Fidelity comparison of the original saliency method, our method, and its alternatives. Here, the
alternative methods represent the practice of replacing the decoy generation (Equation (2)) with constant perturbation or noise perturbation
as well as the practice of replacing the decoy aggregation (Equation (3)) with mean aggregation. See Supplementary Section S14 for more
statistics about the performance differences between our method and the baselines.

ber of decoys to optimize. As discussed in Section 3.3, mul-
tiple swappable patches are aggregated into one combined
patch mask for computational efficiency. Consequently, the
mask multiplicity (i.e., the number of swappable patches
per mask) is inversely proportional to the number of decoys
to optimize. Figure 2(C) shows that our method achieves
stable fidelity scores across a wide range of decoy numbers.
Furthermore, as shown in Supplementary Section S10, the
computational cost to optimize a single decoy in DANCE
is negligible compared to even the fastest vanilla gradient-
based saliency method. This analysis result confirms that
our system could give reasonably good saliency maps with-
out introducing too much computational cost.

Finally, In Supplementary Section S11, we run a sensitivity
test on other hyper-parameters (i.e., the swappable feature
size P , the targeted network layer `, and the initial Lagrange
multiplier λ). The results show that our method is insensitive
to substantial variation of these hyperparameters. This is an
important property because users do not need to extensively
tune the hyper-parameters when using our method.

4.3.2. PERFORMANCE ON THE STANFORD SENTIMENT
TREEBANK (SST) DATASET

To further evaluate the effectiveness of DANCE, we applied
the method to randomly sampled sentences from the Stan-
ford Sentiment Treebank (SST) (Russakovsky et al., 2015).
We trained a two-layer CNN (Kim, 2014) which takes the
pretrained word embeddings as input (Pennington et al.,
2014) (See Supplementary Section S6 for more details about
the experimental setup). As suggested by Guan et al. (2019),
the average saliency value of all dimensions of a word em-
bedding is regarded as the word-level saliency value. The
embeddings of the words are treated as swappable features
when generating decoys. As shown in Figure 3(A), a side-

by-side comparison suggests that our method consistently
helps to produce semantically more meaningful saliency
maps. For example, in a sentence with negative sentiment,
keywords associated with negation, such as “no" and “not,"
are more strongly highlighted by decoy-enhanced saliency
methods. The semantic coherence is also quantitatively sup-
ported by the saliency fidelity (Figure 3(B)). We also tested
the alternatives mentioned above: constant (replacing the
decoy generation with the mean embedding of the whole
dictionary) and noise perturbation with range aggregation,
and decoys with mean aggregation. Figure 3(B) shows that
our method outperforms these alternatives.

To demonstrate the effectiveness of DANCE on models
other than CNNs, we carried out experiments on a multi-
layer perceptron trained with a network intrusion dataset.
The results (Supplementary Section S8) are consistent with
those on CNNs, thereby confirming our method’s applica-
bility to non-CNN architectures.

4.4. Robustness to adversarial attacks

An important design philosophy of DANCE is to model
the variation of an input sample originating from either
sensor noise or unknown perturbations by using decoys. We
therefore hypothesized that DANCE may be particularly
robust to adversarial manipulations of images. To test this
hypothesis, we evaluated the robustness of our method to
adversarial manipulations of images subject to three popular
attacks (Ghorbani et al., 2017): (1) the top-k attack, which
seeks to decrease the scores of the top k most important
features, (2) the target attack, which aims to increase the
importance of a pre-specified region in the input image, and
(3) the mass-center attack, which aims to spatially change
the mass center of the original saliency map. Here, we
specify the bottom-right 4× 4 region of the original image

DANCE: Enhancing saliency maps using decoys

SS: 34.35 SS: 27.78 SS: 53.63 SS: 45.22 SS: 2.49 SS: 2.25

SS: 93.31 SS: 61.20 SS: 23.03 SS: 19.23 SS: 33.78 SS: 29.19

SS: 24.10 SS: 16.21 SS: 30.50 SS: 24.81 SS: 27.15 SS: 22.70

Gradient
w/o decoy

Gradient
w/ decoys

SGrad
w/o decoy

SGrad
w/ decoys

Gradient
difference

SGrad
difference

IntGrad
w/o decoy

IntGrad
w/ decoys

IntGrad
difference

Top-k
Attack

Mass
Center
Attack

Target
Attack

SS: 77.48 SS: 56.36 SS: 19.50 SS: 15.97 SS: 10.29 SS: 8.77

SS: 197.97 SS: 138.14 SS: 20.46 SS: 16.50 SS: 14.07 SS: 13.22

SS: 140.91 SS: 138.14 SS: 29.10 SS: 25.06 SS: 13.35 SS: 11.89

Top-k
Attack

Mass
Center
Attack

Target
Attack

saliency w/ decoys - saliency w/o decoy
+1.0 -1.0

(A) (B)

(C)

(D)

Top-k Attack

Mass Center
 Attack

Target Attack

Se
ns

iti
vi

ty
Se

ns
iti

vi
ty

Se
ns

iti
vi

ty
Figure 4. Robustness to adversarial attacks on images. (A) Visualization of saliency maps under adversarial attacks. (B)–(D) The
decoy-enhanced saliency score is compared to the original saliency score under adversarial attacks, evaluated by sensitivity. See
Supplementary Section S14 for more statistics about the performance differences between our method and the baselines.

for the target attack and select k = 5000 in the top-k attack
(See Supplementary Section S6 for detailed setups). We use
the sensitivity metric (Alvarez-Melis & Jaakkola, 2018) to
quantify the robustness of a saliency method E to attack,
defined as:

SS(E(·, F c),x, x̂) =
‖(E(x, F c)− E(x̂, F c))‖2

‖x− x̂‖2
(7)

where x̂ is the perturbed image of x. A small SS value
means that similar inputs do not lead to substantially differ-
ent saliency maps. As shown in Figure 4(A), a side-by-side
comparison suggests that decoys consistently yield low sen-
sitivity scores and help to produce more visually coherent
saliency maps, mitigating the impact of various adversarial
attacks (See the Supplementary material for more examples).
The visual coherence and robustness to adversarial attacks
are also quantitatively supported by Figure 4(B)–(D).

5. Discussion and conclusion
In this work, we propose DANCE, a method for comput-
ing, from a given saliency method, decoy-enhanced saliency
scores that yield more accurate and robust saliency maps.
We formulate the decoy generation as an optimization prob-
lem, applicable to diverse DNN architectures. We demon-
strate the superior performance of our method relative to
three standard saliency methods, both qualitatively and quan-

titatively, even in the presence of various adversarial per-
turbations to the image. From a theoretical perspective,
by deriving a closed-form solution, we show that the pro-
posed score can provably compensate for the limitations
of existing saliency methods by reflecting the joint effects
from other dependent features and maintaining robustness
to adversarial perturbations. We also demonstrate the com-
putational efficiency of DANCE, and we show that the cost
to optimize a single decoy is small, indicating that our tech-
nique can improve upon existing saliency methods without
introducing too much computational overhead.

This work points to several promising directions for future
research. First, DANCE is designed for non-linear models
such as feedforward DNNs which are most in need of in-
terpretation. Future work will explore the extension of our
method to other models (e.g., linear model and recurrent
neural networks) and to inputs with categorical or discrete
features. Second, recent work (Etmann et al., 2019; Chen
et al., 2019c; Chalasani et al., 2020) shows that adversarial
training can improve a DNN’s interpretability. It is worth ex-
ploring whether DANCE could further enhance the quality
of saliency maps derived from these adversarially retrained
classifiers. Finally, a promising direction could be reframing
interpretability as hypothesis testing and using decoys to
deliver a set of salient features, subject to false discovery
rate control at some pre-specified level (Burns et al., 2019;
Lu et al., 2018).

DANCE: Enhancing saliency maps using decoys

Acknowledgments
We would like to thank the anonymous reviewers and Meta
reviewer for their helpful comments. This project was sup-
ported in part by NSF grant CNS-1718459, by NSF grant
CNS-1954466, and by ONR grant N00014-20-1-2008.

References
Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt,

M., and Kim, B. Sanity checks for saliency maps. In
Proc. of NeurIPS, 2018.

Alvarez-Melis, D. and Jaakkola, T. S. Towards robust inter-
pretability with self-explaining neural networks. In Proc.
of NeurIPS, 2018.

Ancona, M., Ceolini, E., Öztireli, C., and Gross, M. To-
wards better understanding of gradient-based attribution
methods for deep neural networks. In Proc. of ICLR,
2018.

Barber, R. F. and Candès, E. J. Controlling the false discov-
ery rate via knockoffs. The Annals of Statistics, 2015.

Binder, A., Montavon, G., Lapuschkin, S., Müller, K.-R.,
and Samek, W. Layer-wise relevance propagation for
neural networks with local renormalization layers. In
Proc. of ICANN, 2016.

Burns, C., Thomason, J., and Tansey, W. Interpreting black
box models via hypothesis testing. arXiv:1904.00045,
2019.

Chalasani, P., Chen, J., Chowdhury, A. R., Wu, X., and
Jha, S. Concise explanations of neural networks using
adversarial training. In Proc. of ICML, 2020.

Chang, C.-H., Creager, E., Goldenberg, A., and Duvenaud,
D. Explaining image classifiers by counterfactual genera-
tion. In Proc. of ICLR, 2019.

Chen, C., Li, O., Tao, D., Barnett, A., Rudin, C., and Su,
J. K. This looks like that: deep learning for interpretable
image recognition. In Proc. of NeurIPS, 2019a.

Chen, J., Song, L., Wainwright, M. J., and Jordan, M. I.
Learning to explain: An information-theoretic perspective
on model interpretation. In Proc. of ICML, 2018.

Chen, J., Song, L., Wainwright, M. J., and Jordan, M. I.
L-shapley and c-shapley: Efficient model interpretation
for structured data. In Proc. of ICLR, 2019b.

Chen, J., Wu, X., Rastogi, V., Liang, Y., and Jha, S. Robust
attribution regularization. In Proc. of NeurIPS, 2019c.

Dabkowski, P. and Gal, Y. Real time image saliency for
black box classifiers. In Proc. of NeurIPS, 2017.

Etmann, C., Lunz, S., Maass, P., and Schönlieb, C.-
B. On the connection between adversarial robust-
ness and saliency map interpretability. arXiv preprint
arXiv:1905.04172, 2019.

Fan, L., Zhao, S., and Ermon, S. Adversarial localization
network. In Proc. of NeurIPS LLD Workshop, 2017.

Fong, R. C. and Vedaldi, A. Interpretable explanations
of black boxes by meaningful perturbation. In Proc. of
ICCV, 2017.

Ghorbani, A., Abid, A., and Zou, J. Interpretation of neural
networks is fragile. arXiv:1710.10547, 2017.

Ghorbani, A., Wexler, J., Zou, J. Y., and Kim, B. Towards au-
tomatic concept-based explanations. In Proc. of NeurIPS,
2019.

Goyal, Y., Wu, Z., Ernst, J., Batra, D., Parikh, D., and Lee,
S. Counterfactual visual explanations. Proc. of ICML,
2019.

Guan, C., Wang, X., Zhang, Q., Chen, R., He, D., and Xie,
X. Towards a deep and unified understanding of deep
neural models in nlp. In Proc. of ICML, 2019.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In Proc. of CVPR, 2016.

Hendrycks, D. and Dietterich, T. Benchmarking neural
network robustness to common corruptions and perturba-
tions. In Proc. of ICLR, 2019.

Hooker, S., Erhan, D., Kindermans, P.-J., and Kim, B. A
benchmark for interpretability methods in deep neural
networks. In Proc. of NeurIPS, 2019.

Ikeno, K. and Hara, S. Maximizing invariant data per-
turbation with stochastic optimization. arXiv preprint
arXiv:1807.05077, 2018.

Kim, Y. Convolutional neural networks for sentence classi-
fication. Proc. of EMNLP, 2014.

Kindermans, P.-J., Hooker, S., Adebayo, J., Alber, M.,
Schütt, K. T., Dähne, S., Erhan, D., and Kim, B. The (Un)
reliability of saliency methods. arXiv:1711.00867, 2017.

Koh, P. W. and Liang, P. Understanding black-box predic-
tions via influence functions. Proc. of ICML, 2017.

Koh, P. W. W., Ang, K.-S., Teo, H., and Liang, P. S. On
the accuracy of influence functions for measuring group
effects. In Proc. of NeurIPS, 2019.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
In Proc. of NeurIPS, 2012.

DANCE: Enhancing saliency maps using decoys

Levine, A., Singla, S., and Feizi, S. Certifiably ro-
bust interpretation in deep learning. arXiv preprint
arXiv:1905.12105, 2019.

Lipton, Z. C. The mythos of model interpretability.
arXiv:1606.03490, 2016.

Lu, Y., Fan, Y., Lv, J., and Noble, W. S. DeepPINK: re-
producible feature selection in deep neural networks. In
Proc. of NeurIPS, 2018.

Lundberg, S. M. and Lee, S.-I. A unified approach to inter-
preting model predictions. In Proc. of NeurIPS, 2017.

Moosavi-Dezfooli, S.-M., Fawzi, A., Fawzi, O., and
Frossard, P. Universal adversarial perturbations. In Proc.
of CVPR, 2017.

Nie, W., Zhang, Y., and Patel, A. A theoretical explana-
tion for perplexing behaviors of backpropagation-based
visualizations. In Proc. of ICML, 2018.

Pennington, J., Socher, R., and Manning, C. D. Glove:
Global vectors for word representation. In Proc. of
EMNLP, 2014.

Ribeiro, M. T., Singh, S., and Guestrin, C. Why should i
trust you?: Explaining the predictions of any classifier. In
Proc. of KDD, 2016.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., et al. Imagenet large scale visual recognition chal-
lenge. International Journal of Computer Vision, 2015.

Schulz, K., Sixt, L., Tombari, F., and Landgraf, T. Re-
stricting the flow: Information bottlenecks for attribution.
2020.

Selvaraju, R. R., Das, A., Vedantam, R., Cogswell, M.,
Parikh, D., and Batra, D. Grad-cam: Visual explana-
tions from deep networks via gradient-based localization.
arXiv:1611.07450, 2016.

Shrikumar, A., Greenside, P., and Kundaje, A. Learning
important features through propagating activation differ-
ences. In Proc. of ICML, 2017.

Simonyan, K. and Zisserman, A. Very deep convo-
lutional networks for large-scale image recognition.
arXiv:1409.1556, 2014.

Simonyan, K., Vedaldi, A., and Zisserman, A. Deep inside
convolutional networks: Visualising image classification
models and saliency maps. arXiv:1312.6034, 2013.

Singla, S., Wallace, E., Feng, S., and Feizi, S. Understand-
ing impacts of high-order loss approximations and fea-
tures in deep learning interpretation. arXiv:1902.00407,
2019.

Sixt, L., Granz, M., and Landgraf, T. When explanations
lie: Why many modified bp attributions fail. In Proc. of
ICML, 2020.

Smilkov, D., Thorat, N., Kim, B., Viégas, F., and Watten-
berg, M. Smoothgrad: removing noise by adding noise.
arXiv:1706.03825, 2017.

Springenberg, J. T., Dosovitskiy, A., Brox, T., and Ried-
miller, M. Striving for simplicity: The all convolutional
net. arXiv preprint arXiv:1412.6806, 2014.

Sturmfels, P., Lundberg, S., and Lee, S.-I. Visualizing the
impact of feature attribution baselines. Distill, 2020.

Sundararajan, M., Taly, A., and Yan, Q. Axiomatic attribu-
tion for deep networks. In Proc. of ICML, 2017.

Toneva, M. and Wehbe, L. Interpreting and improving
natural-language processing (in machines) with natural
language-processing (in the brain). In Proc. of NeurIPS,
2019.

Yeh, C.-K., Kim, J., Yen, I. E.-H., and Ravikumar, P. K.
Representer point selection for explaining deep neural
networks. In Proc. of NeurIPS, 2018.

Yousefzadeh, R. and O’Leary, D. P. Interpreting neural net-
works using flip points. arXiv preprint arXiv:1903.08789,
2019.

Zeiler, M. D. and Fergus, R. Visualizing and understanding
convolutional networks. In Proc. of ECCV, 2014.

Zołna, K., Geras, K. J., and Cho, K. Classifier-agnostic
saliency map extraction. In Proceedings of AAAI, 2019.

DANCE: Enhancing saliency maps using decoys

S1 Implementation details

S1.1 Aggregating multiple decoy patches into single decoy mask

For example, given an input image x ∈ R
√
d×
√
d and a swappable patch with size P , we obtain

(
√
d− P + stride)2 unique masks by sliding the swappable patch across the input. For an input with

high dimensionality and relatively small patch size, this n will be relatively large. In our implementation,
to reduce the computational cost, we aggregate m (m < n) masks into one combined mask, which
contains m swappable patches at different locations. Then, we generate a decoy by taking this combined
mask as the input. The optimization process will perturb all the features within these m swappable
patches. With this aggregation, the decoy mask number reduces to n =

⌊
(
√
d− P + stride)2/m

⌋
.

S1.2 Optimization details
The optimization function proposed to generate decoys is non-differentiable and very difficult to solve;
hence, we instead solve an alternate formulation with the help of the following tricks. First, we
introduce a Lagrange multiplier λ > 0 and augment the first constraint in the optimization function
as a penalty in the objective function. This will rule out the hyper-parameter ε in the Eqn.(2) of
Section 3.3. Second, we use projected gradient descent during the optimization to eliminate the mask
constraint (i.e., (x̃ − x) ◦ (1 −M) = 0). Specifically, after each standard gradient descent step, we
enforce x̃ = x̃ ◦M+ x ◦ (1−M). Third, we use the change-of-variable trick (Carlini & Wagner, 2017)
to eliminate the feature value constraint (i.e., x̃ ∈ [xmin,xmax]d). Instead of directly optimizing x̃,
we first normalize it to [0, 1] and introduce x̂ satisfying x̃i = 1

2 (tanh(x̂i) + 1), for all i ∈ {1, 2, · · · , d}.
Because tanh(x̂i) ∈ [−1, 1] implies x̃i ∈ [0, 1], any solution to x̂ is naturally valid. It should be noted
that other transformations for this third step are also possible but were not explored in this paper.
Putting these ideas together, we minimize the following objective function:

minimizex̂ −
∥∥∥∥(

1

2
(tanh(x̂) + 1)− x) · s)+

∥∥∥∥
1

+ λ ·
∥∥∥∥F`(

1

2
(tanh(x̂) + 1))− F`(x)

∥∥∥∥
∞
, (1)

where λ > 0 is initialized small and repeatedly doubled until the optimization succeeds. Because the
L∞ norm is not fully differentiable, we adopt the approximation trick introduced by Carlini & Wagner
(2017) and solve the following formulation:

minimizex̂ −
∥∥∥∥max((

1

2
(tanh(x̂) + 1)− x) · s, 0)

∥∥∥∥
1

+ λ ·
∥∥∥∥(|F`(

1

2
(tanh(x̂) + 1))− F`(x)| − τ)+

∥∥∥∥2
2

, (2)

where τ > 0. In this paper, we follow the selection strategy proposed in Carlini & Wagner (2017) and
initialize τ = 1. After each iteration, if the second term is zero, then we reduce τ by a factor of 0.95
and repeat; otherwise, we terminate the optimization. After obtaining x̂, we compute x̃ and map it
back to the original feature value range [xmin,xmax]. Note that Eqn. (2) can be efficiently solved by any
first-order optimization method without introducing too much computational overhead. In practice,
the average run time of solving it is 62.3% shorter than the fastest, vanilla gradient method. Note that,
when solving decoys, before applying the gradient descent, we add a small perturbation to the input
via random initialization by following the insight of SmoothGrad. This helps avoid the zero gradients
of saturated inputs and obtain meaningful decoy perturbations.

1

S2 Proof of Theorem 1
Before proving Theorem 1, we first state and prove the following lemma.

Lemma 1. Consider an input x and its decoy x̃, generated by replacing the original features with
swappable features in K, |K| = K. The partial derivative of F c(x̃) w.r.t. to x̃i for i ∈ K is∣∣∣∣∣(Ox̃F

c(x̃))i −
1

2

∑
k∈K

(x̃k − xk)(Hx̃)i,k

∣∣∣∣∣ ≤ C . (3)

Proof. The second-order Taylor expansion of the predicted F c(x) for target class c around x is as
follows:

F c(x) ≈ F c(x̃) + Ox̃F
c(x̃)T ∆ +

1

2
∆THx̃∆ , (4)

where ∆ = x − x̃. By definition of the decoys in Section 3.2 (i.e., F c(x) = F c(x̃)), the following
equation holds:

Ox̃F
c(x̃)T ∆ ≈ −1

2
∆THx̃∆ . (5)

From the above equation, we can see that, for a linear model, the linearity zeroes out the gradient of
the decoys, causing our method to output zero saliency scores for all input features. We clarified in
Section 5 that our method is mainly defined for non-linear complicated models.

Given a swappable patch of size K × 1 starting from position i1, then ∆ = [0, ...,xi1 − x̃i1 , ...,xiK −
x̃iK , 0, ..., 0]. As such, we have

Ox̃F
c(x̃)T ∆ =

∑
i∈K

(Ox̃F
c(x̃))i(xi − x̃i) ,

∆THx̃∆ =
∑
i∈K

(xi − x̃i)
∑
k∈K

(Hx̃)i,k(xk − x̃k) .
(6)

Plugging Eqn. (6) into Eqn. (5), we have∑
i∈K

[(Ox̃F
c(x̃))i +

1

2

∑
k∈K

(Hx̃)i,k(xk − x̃k)](xi − x̃i) = 0 . (7)

Then we can derive ∣∣∣∣∣(Ox̃F
c(x̃))i +

1

2

∑
k∈K

(xk − x̃k)(Hx̃)i,k

∣∣∣∣∣ ≤ C ,∣∣∣∣∣(Ox̃F
c(x̃))i −

1

2

∑
k∈K

(x̃k − xk)(Hx̃)i,k

∣∣∣∣∣ ≤ C .
(8)

First, we can derive |x̃i−xi| is bounded by 2max(xmax, |xmin|). We also have |x̃i+k−xi+k|0 in that we can
always find a small perturbation to each feature in x such that ‖F`(x̃)−F`(x)‖∞ ≤ ε. In addition, both
gradient and Hessian are bounded by some Lipschitz constant (Szegedy et al., 2013). 1 As a result, we

can always find a constant C, such that C ≥
∣∣∣∣−∑

k1∈K\i
[(Ox̃F

c(x̃))k1
+ 1

2

∑
k2∈K

(Hx̃)k1,k2
(xk2

−x̃k2
)](xk1

−x̃k1
)

(xi−x̃i)

∣∣∣∣.
For the case K = 1, we have (Ox̃F

c(x̃))i = 1
2 (Hx̃)i,i(x̃i − xi).

�
Now we prove Theorem 1 from Section 3.5.
Consider a CNN with L hidden blocks, with each layer ` containing a convolutional layer with a

filter of size
√
s` ×

√
s` and a max pooling layer with pooling size

√
s` ×

√
s`. The input to this CNN

is x ∈ Rd, unrolled from a
√
d ×
√
d matrix. Similarly, we also unroll each convolutional filter into

g` ∈ Rs` , where g` is indexed as (g`)j for j ∈ J`. Here, J` corresponds to the index shift in matrix
1Following other works that also utilized Lipschitz continuity to analyze DNNs (Szegedy et al., 2013; Ghorbani et al.,

2017), we assume that F` is locally continuous around x, for ` = 1, 2, ..., L.

2

form from the top-left to bottom-right element. The output of the network is the probability vector
p ∈ RC generated by the softmax function, where C is the total number of classes. Such a network can
be represented as

m` = pool(relu(g` ∗m`−1)) for ` = 1, 2, 3, ..., L ,

o = WT
L+1mL + bL+1,

p = softmax(o) ,

(9)

where relu(·) and pool(·) indicate the ReLU and pooling operators, m` ∈ Rd` is the output of the block
` (m0 = x), and (g` ∗m`−1) ∈ Rd`−1 represents a convolutional operation on that block.

Consider an input x and its decoy x̃, generated by swapping features in K. For each feature i ∈ K,
we have the following theorem for the decoy-enhanced saliency score Zi:

Theorem 1. In the aforementioned setting, Zi is bounded by∣∣∣∣∣Zi −
1

2

∣∣∣∣∣∑
k∈K

(x̃+
k − x̃−k)(Hx)k,i

∣∣∣∣∣
∣∣∣∣∣ ≤ C1 . (10)

Proof. The gradient of pc with respect to x can be written as follows, using the denominator layout
notation of the derivative of a vector:

Oxpc =

L∏
`=1

∂m`

∂m`−1

∂o

∂mL

∂pc

∂o
, (11)

where
∂o

∂mL
= WL+1 , (12)

and {
∂pc

∂oc′
= (pc − p2

c) if c′ = c ,
∂pc

∂oc′
= −pcpc′ otherwise .

(13)

Then we can write ∂pc

∂o as follows:
∂pc

∂o
= P̂·c , (14)

where P̂·c corresponds to the c-th column of P̂ and P̂ = diag(p)− ppT . We then define B` = ∂m`

∂m`−1

as B` ∈ Rd`−1×d` . In the following, we compute B`.
First, we can have{

∂(m`)j
∂(relu(g`∗m`−1))n

= 1 if ĵ − n ∈ J`, and n = argmaxn′∈ĵ+J`
(g` ∗m`−1)n′ ,

∂(m`)j
∂(relu(g`∗m`−1))n

= 0 otherwise ,
(15)

where ĵ represents the center of the pooling patch in relu(g` ∗m`−1), which results in (m`)j . Then we
can compute {

∂(relu(g`∗m`−1))n
∂(m`−1)i

= (a`)n(g`)n−i if n− i ∈ J` ,
∂(relu(g`∗m`−1))n

∂(m`−1)i
= 0 otherwise ,

(16)

where (a`)n = 1 {(relu(g` ∗m`−1)n) ≥ 0}. If we change the activation function to either sigmoid or
tanh, then (a`)n in Eqn. (16) will be replaced with the derivative of either function. For the sigmoid
activation function σ(x), the derivative is σ(x)(1− σ(x)), with a range of [0, 14]. For the tanh activation
function tanh(x), the derivative is 1− tanh(x)2, with a range of [0, 1]. We conclude that the derivative
of both sigmoid and tanh are bounded by a value no larger than 1.

Combining Eqn. (15) with (16), we have{
(B`)ij =

∂(m`)j
∂(m`−1)i

= (a`)n(g`)n−i if n− i ∈ J`, ĵ − n ∈ J`, and n = argmaxn′∈ĵ+J`
(g` ∗m`−1)n′ ,

(B`)ij =
∂(m`)j

∂(m`−1)i
= 0 otherwise .

(17)

3

For simplicity, we rewrite the non-zero condition as n ∈ Ĵ`. Plugging B`, ` = 1, ..., L, into Eqn. 11, we
can obtain the partial derivative Oxpc.

Further, we compute each element in the Hessian matrix Hij as follows:

Hij = Oxi
(Oxj

pc) =
∂(
∏L

`=1 B`)j·WL+1P̂·c
∂xi

= (

L∏
`=1

B`)j·WL+1
∂P̂·c
∂xi

=

(
dL∑

nL=1

(

L∏
`=1

B`)jnL
(WL+1)nL·

)
∂P̂·c
∂xi

,

(18)

and
∂P̂c′c

∂xi
=

{
(1− 2pc)Oxipc if c′ = c ,

pcOxipc′ + pc′Oxi
pc otherwise .

(19)

Now we compute (
∏L

`=1 B`)jnL
as

(
L∏

`=1

B`)jnL
= (B1)j·

L−1∏
`=2

B`(BL)·nL
, (20)

where
(B1)j·B2 = [0, ..., Cn2(a2)n2

∑
n1∈Ĵ1

(a1)ngn−1, ..., 0] , (21)

and where Cn2
= (g2)n2−2

∑
n1∈Ĵ1

gn−1. Here, we redefine Ĵ1 as the set of indices such that (B1)jn1
6= 0

for n1 ∈ Ĵ1. As such, we can compute (B1)j·
∏L−1

`=2 B` as

(B1)j·

L−1∏
`=2

B` = [0, .., CnL−1
(aL−1)nL−1

L−2∑
`=1

∑
n`∈Ĵ`

(a`)n`
, ..., 0] . (22)

Plugging Eqn. (22) into Eqn. (20), we have

(

L∏
`=1

B`)jnL
= (B1)j·

L−1∏
`=2

B`(BL)·nL
= (CL)nL

(aL)nL

L−1∑
`=1

∑
n`∈Ĵ`

(a`)n`
. (23)

Plugging Eqn. (23) into Eqn. (18), we have

Hij =

Cj

L∑
`=1

∑
n`∈Ĵ`

(a`)n`

 ∂P̂·c
∂xi

, (24)

where Cj is a linear combination of g1, ..., gL, WL+1, which is bounded. Hij equals the multiplication
of two components—the summation of neurons activated by x and a gradient ∂P̂·c

∂xi
. The first part shows

that the Hessian includes the neighborhood features that are jointly activated, indicating inter-feature
interaction.

Given the total number of neurons in a CNN is a constant (denoted by CT), we have 0 ≤(∑L
`=1

∑
n`∈Ĵ`

(a`)n`

)
≤ CT . Then, we have |(Hx)ij | ≤ CT |Cj

∂P̂·c
∂xi
|. Since the derivatives of both

sigmoid and tanh are no larger than 1, this inequality also applies to the network with these two
functions as the activation function. Similarly, for the Hessian (Hx̃)ij of a decoy x̃, we also have
|(Hx̃)ij ≤ CT |Cj

∂P̂·c
∂x̃i
|. Given the inequality of (Hx̃)ij and (Hx̃)ij , we can obtain that |(Hx̃)ij −

(Hx)ij | ≤ 2CTmax(|C̃j
∂P̂·c
∂x̃i
|, |Cj

∂P̂·c
∂xi

)|, where ∂P̂·c
∂xi

is given by Eqn. (19). Recalling that Pc is within
[0, 1], the gradient ∂Pc

∂xi
is bounded by some Lipschitz constant (Szegedy et al., 2013), we can obtain

4

that ∂P̂·c
∂xi

is bounded by some constant. Finally, we can derive that |(Hx̃)ij − (Hx)ij | ≤ CC , where CC

represents the upper bound.2
Now, we derive the decoy-enhanced saliency score Zi for xi, given a population of saliency scores

Ẽi =
{
E(x̃1;F)i, E(x̃2;F)i, · · · , E(x̃2n;F)i

}
. Let x̃+, x̃− ∈

{
x̃1, x̃2, · · · , x̃2n

}
denotes the decoy which

maximizes and minimize E(x̃;F)i, respectively. According to Lemma 1, the partial derivative Ox̃i
pc

has the following relationship∣∣∣∣∣(Ox̃F
c(x̃))i −

1

2

∑
k∈K

(x̃k − xk)(Hx̃)i,k

∣∣∣∣∣ ≤ C , (25)

Then, we can derive

1

2

∑
k∈K

(x̃+
k − xk)(Hx̃+)i,k − C ≤ (Ox̃+F c(x̃+))i ≤

1

2

∑
k∈K

(x̃+
k − xk)(Hx̃+)i,k + C , (26)

− 1

2

∑
k∈K

(x̃−k − xk)(Hx̃−)i,k − C ≤ −(Ox̃−F
c(x̃−))i ≤ −

1

2

∑
k∈K

(x̃−k − xk)(Hx̃−)i,k + C , (27)

Then, we have

Zi = (Ox̃+F c(x̃+))i − (Ox̃−F
c(x̃−))i

≤1

2

∑
k∈K

(x̃+
k − xk)(Hx̃+)i,k −

1

2

∑
k∈K

(x̃−k − xk)(Hx̃−)i,k + 2C

≤1

2

∑
k∈K

(x̃+
k − xk)((Hx)i,k + CC)− 1

2

∑
k∈K

(x̃−k − xk)((Hx̃−)i,k − CC) + 2C

≤1

2

∑
k∈K

(x̃+
k − x̃−k)(Hx)i,k +

1

2
CC

∑
k∈K

(x̃+
k − x̃−k) + 2C ,

(28)

And
Zi = (Ox̃+F c(x̃+))i − (Ox̃−F

c(x̃−))i

≥1

2

∑
k∈K

(x̃+
k − xk)(Hx̃+)i,k −

1

2

∑
k∈K

(x̃−k − xk)(Hx̃−)i,k − 2C

≥1

2

∑
k∈K

(x̃+
k − xk)((Hx)i,k − CC)− 1

2

∑
k∈K

(x̃−k − xk)((Hx̃−)i,k + CC) + 2C

≥1

2

∑
k∈K

(x̃+
k − x̃−k)(Hx)i,k −

1

2
CC

∑
k∈K

(x̃+
k − x̃−k)− 2C ,

(29)

Combining Eqn. (28) with Eqn. (29), we have∣∣∣∣∣Zi −
1

2

∣∣∣∣∣∑
k∈K

(x̃+
k − x̃−k)(Hx)k,i

∣∣∣∣∣
∣∣∣∣∣ ≤ C1 . (30)

Recall that (x̃+
k − x̃−k) is bounded by a upper-bound, we can obtain that there exist a constant C1,

such that C1 ≥ 1
2CC

∑
k∈K(x̃+

k − x̃−k) + 2C. Note that this upper bound is data specific, and we leave
the exploration on its tightness as a part of future works.

�
2Note that this inequality cannot be directly obtained by the Lipschitz inequality, because the gradient may not be

continuous.

5

S3 Proof of Proposition 1

Proposition 1. Given an input x and its corresponding adversarial sample x̂, if both |xi − x̃i| ≤ C2δi

and
∣∣∣x̂i − ˜̂xi

∣∣∣ ≤ C2δi can obtain where C2 > 0 is a bounded constant and δi = |E(x̂, F)i − E(x, F)i|,
then the following relation can be guaranteed.

|(Zx̂)i − (Zx)i| ≤ |(E(x̂, F)i − E(x, F))i| . (31)

Proof. Recall the goal of the attack against saliency maps is to subtly perturb an input sample such
that the added perturbation does not change the output of the classifier (Ghorbani et al., 2017) but
force a saliency method to output a less meaningful saliency map (i.e., highlighting features that are
irrelevant to the classifier prediction). To achieve this goal, when generating an adversarial sample x̂
from the given input x, an attacker needs to impose the following constraint ‖x̂− x‖∞ ≤ ε. Suppose
we have an adversarial sample x̂ satisfies this constraint. Then, we can assume (x̂− x)i = ε̂i, where
|ε̂i| ≤ ε, for i = 1, 2, ..., d. In addition, we can compute saliency maps E(x̂, F) and E(x, F) for x̂ and
x by using an existing saliency method. 3 Given both saliency maps, we can further compute the
difference between E(x̂, F) and E(x, F) as

(E(x̂, F)− E(x, F))i = Ox̂F
c(x̂)− OxF

c(x) = (Hx(x̂− x))i =

d∑
j=1

(Hx)ij ε̂j . (32)

Based on the Eqn.(2) in Section 3.3, when generating the decoys x̃, we ensure the classifier’s predictions
for those decoys are as same as that of the x. In this work, we achieve this by bounding the difference
between the hidden representations of x̃ and x. As is discussed in Section S2, to preserve the same
prediction c for x̃ and x, one has to ensure |F c(x̃) − F c(x)| is bounded. This implies the difference
between x̃ and x is bounded within ε. Here, εi represents the maximum difference between x̃i and xi

at the ith dimension. As is mentioned above, the adversarial sample x̂ does not change the classifier’s
prediction. Therefore, we could imply ε̂i ≤ εi, for i = 1, 2, ..., d.

Now, suppose we obtain a set of decoys for x and have their corresponding saliency maps, i.e.,{
E(x̃1;F)i, E(x̃2;F)i, · · · , E(x̃2n;F)i)

}
. Let x̃+ ∈

{
x̃1, x̃2, · · · , x̃n

}
denote the decoys which maximize

E(x̃;F)i and let x̃− denote the decoys which minimize E(x̃;F)i. Similarly, we can also have the
corresponding decoys ˜̂x− and ˜̂x− for the adversarial sample x̂ as well as their corresponding saliency
maps. With both the decoys and saliency maps for the input sample x and its adversarial sample x̂,
we can compute the difference between (Zx̂)i and (Zx)i as

(Zx̂)i − (Zx)i

=
(
E(˜̂x+, F)i − E(˜̂x−, F)i

)
−
(
E(x̃+, F)i − E(x̃−, F)i)

)
=
(

(Hx(˜̂x+ − x))i − (Hx(˜̂x− − x))i

)
−
(
(Hx(x̃+ − x))i − (Hx(x̃− − x))i

)
=

d∑
j=1

(Hx)ij

(
(˜̂x+

j − ˜̂x−j)− (x̃+
j − x̃−j)

)
.

(33)

To guarantee an improvement in robustness against the adversarial perturbation, we have to ensure
that |(Zx̂)i − (Zx)i| − |(E(x̂, F)− E(x, F))i| ≤ 0, for i = 1, 2..., d. That is,∣∣∣∣∣∣

d∑
j=1

(Hx)ij

(
(˜̂x+

j − ˜̂x−j)− (x̃+
j − x̃−j)

)∣∣∣∣∣∣−
∣∣∣∣∣∣

d∑
j=1

(Hx)ij ε̂j

∣∣∣∣∣∣ ≤ 0,

∣∣∣∣∣∣
d∑

j=1

(Hx)ij

(
(˜̂x+

j − ˜̂x−j)− (x̃+
j − x̃−j)

)∣∣∣∣∣∣ ≤
∣∣∣∣∣∣

d∑
j=1

(Hx)ij ε̂j

∣∣∣∣∣∣ ,
(34)

3For simplicity, we use the vanilla gradient method. The conclusion can be generalized to the other saliency methods
considered in this paper

6

As is discussed in Section S2, |(Hx)ij | ≤ CC . With this, we can have∣∣∣∣∣∣
d∑

j=1

(Hx)ij

(
(˜̂x+

j − ˜̂x−j)− (x̃+
j − x̃−j)

)∣∣∣∣∣∣
≤

d∑
j=1

|(Hx)ij |
∣∣∣(˜̂x+

j − ˜̂x−j)− (x̃+
j − x̃−j)

∣∣∣
≤

d∑
j=1

Cc

∣∣∣(˜̂x+
j − ˜̂x−j)− (x̃+

j − x̃−j)
∣∣∣

(35)

By plugging Eqn. (35) into Eqn. (34), we conclude that as long as
∣∣∣(˜̂x+

j − ˜̂x−j)− (x̃+
j − x̃−j)

∣∣∣ ≤
1

Ccd

∣∣∣∑d
j=1(Hx)ij ε̂j

∣∣∣, our method could guarantee to improve the robustness against the adversarial

perturbations. Let δi = |E(x̂, F)i − E(x, F)i|. If we can ensure that |xi − x̃i| ≤ 1
4Ccd

δi and
∣∣∣x̂i − ˜̂xi

∣∣∣ ≤
1

4Ccd
δi, we can have

∣∣x̃+
j − x̃−j

∣∣ ≤ 1
2Ccd

δi and
∣∣∣˜̂x+

j − ˜̂x−j

∣∣∣ ≤ 1
2Ccd

δi. Thus, the aforementioned condition

can be satisfied, i.e.,
∣∣∣(˜̂x+

j − ˜̂x−j)− (x̃+
j − x̃−j)

∣∣∣ ≤ 1
Ccd

δi. By setting C2 = 1
4Ccd

, we could obtain the
robustness conditions in Proposition 1.

�

S4 Corollary 1
Consider a multilayer perceptron with L fully-connected hidden layers and a decoy swappable size K×1.
The input of this MLP is x ∈ Rd. For each hidden layer, we use the ReLU activation function. Similar
to the CNN mentioned above, the output of this CNN is p ∈ RC . The network can be represented as:

m` = relu(WT
` m`−1 + b`), For ` = 1, 3, ..., L ,

o = WT
L+1mL + bL+1,

p = softmax(o) .

(36)

where W` ∈ Rd`−1×d` , for ` ∈ {1, · · · , L+1} represents the weights of the neural network, and b` ∈ Rd`

represents the biases, where d0 = d and dL+1 = C. m` ∈ Rd` is the output of each hidden layer, with
m0 = x and o ∈ RC is the logits. The entry-wise softmax operator for target class c is defined as
pc = eoc∑C

c′=1
eoc′

, for c ∈ {1, 2, · · · , C}.

Corollary 1. For the above MLP, Zi is also bounded by:

Zi ≤

∣∣∣∣∣12 ∑
k∈K

(x̃i+k − xi+k)(Hx)i+k,i

∣∣∣∣∣+ C2 . (37)

Proof. Based on the proof of Theorem 1, the gradient of pc with respect to x can be written as follows

Oxpc =

L∏
l=1

B`WL+1P̂·c . (38)

where B` = ∂m`

∂m`−1
, B` ∈ Rd`−1×d` . P̂·c is also defined as P̂ = diag(p) − ppT . In the following, we

compute Bl. First, we can compute (B1)ij , in which

(B1)ij =
∂(m1)j
∂xi

=
∂(WT

1 x + b1)j
∂xi

∂(m1)j
∂(WT

1 x + b1)j
= (W1)ij(a1)j , (39)

7

where (a1)j = 1{(WT
1 x + b1)j ≥ 0}. Similar, we can also compute (B`)ij , for ` = 2, 3, ..., L

(B`)ij = (W`)ij(a`)j , (40)

where (a`)j = 1{(WT
` x + b`)j ≥ 0}.

Then, we compute the each element in the Hessian matrix Hij . Specifically, based on Eqn. (18), we
have

Hij =

(
dL∑

nL=1

(

L∏
`=1

B`)jnL
(WL+1)nL·

)
∂P̂·c
∂xi

, (41)

where ∂P̂·c
∂xi

is the same with Eqn. (19).
Now, we compute (

∏L
`=1 Bl)jnL

as

(

L∏
`=1

B`)jnL
= (B1)j·

L−1∏
`=2

B`(BL)·nL
, (42)

where (B1)j· = [(W1)j1(a1)1, (W1)j2(a1)2, ..., (W1)jd1
(a1)d1

] and

(B1)j·B2 = [(a2)1

d1∑
n1=1

(C2)1n1
(a1)n1

, ..., (a2)d2

d1∑
n1=1

(C2)d2,n1
(a1)n1

] , (43)

where (C2)n2,n1 = (W2)n1,n2(W1)j,n1 . For simplicity, we can rewrite
∑d1

n1=1(C2)n2,n1(a1)n1 =

(C2)n2

∑d1

n1=1(a1)n1
. Then, we have

(B1)j·B2 = [(C2)1(a2)1

d1∑
n1=1

(a1)n1
, ..., (C2)d2

(a2)d2

d1∑
n1=1

(a1)n1
] . (44)

As such, we can compute (B1)j·
∏L−1

`=2 B` as

(B1)j·

L−1∏
`=2

B` = [(CL−1)1(aL−1)1

L−2∑
`=1

d∑̀
n`=1

(a`)n`
, ..., (CL−1)dL−1

(aL−1)dL−1

L−2∑
`=1

d∑̀
n`=1

(a`)n`
] . (45)

Plugging Eqn. (45) into Eqn. (14), we have

(

L∏
`=1

B`)jnL
= (B1)j·

L−1∏
`=2

B`(BL)·nL
= (CL)nL

(aL)nL

L−1∑
`=1

d∑̀
n`=1

(a`)n`
. (46)

Finally, we can obtain that

Hij =

(
dL∑

nL=1

(CL)nL
(aL)nL

L−1∑
`=1

d∑̀
n`=1

(a`)n`
(WL+1)nL·

)
∂P̂·c
∂xi

=

(
Cj

L∑
`=1

d∑̀
n`=1

(a`)n`

)
∂P̂·c
∂xi

,

(47)

where Cj is a linear combination of the elements in (W1)j·, W2, ..., WL+1.
Note that the Hessian derived from the MLP has a similar form with the Hessian derived from the

CNN in Eqn. 24, i.e., the summation of neurons activated by x multiplying the gradient. Here, the
summation of neurons activated by x is again bounded by the total number of neurons in the network.
The gradient ∂P̂·c

∂xi
is bounded by a Lipschitz constant. Similarly, we also have the following inequality

for (Hx̃)ij and (Hx)ij , i.e., |(Hx̃)ij − (Hx)ij | ≤ CM .

8

Similar to Theorem 1,let x̃+, x̃− ∈
{
x̃1, x̃2, · · · , x̃2n

}
denotes the decoy which maximizes and

minimize E(x̃;F)i, respectively. Based on Eqn. (25) to Eqn. (30), we have∣∣∣∣∣Zi −
1

2

∣∣∣∣∣∑
k∈K

(x̃+
k − x̃−k)(Hx)k,i

∣∣∣∣∣
∣∣∣∣∣ ≤ C2 . (48)

C2 ≥ 1
2CM

∑
k∈K(x̃+

k − x̃−k) + 2C. Slightly different for CNN, MLP sometimes is used to process the
input that does not have a strong local dependency. In this case, we can set the swappable path size
K = 1. Then, Eqn. (48) can reformulated as

∣∣Zi − 1
2

∣∣(x̃+
i − x̃−i)(Hx)i,i

∣∣∣∣ ≤ C2. As we can observe
from this equation, our proposed saliency score is still able to compensate for the gradient saturation
problem. �

Table S1: The hyper-parameter choices of the proposed method on different target models.

` λ patch_size (P) stride τ m
ImageNet AlexNet 6 10000 3 1 1 100
ImageNet VGG16 3 10000 3 1 1 100
ImageNet ResNet 2 10000 3 1 1 100

SST CNN 2 10000 1 1 1 1
IDS MLP 2 10000 1 1 1 1

S5 Datasets and experiment setup
In this section, we introduce the datasets used in our experiments and the neural network trained on
each dataset, followed by our choices of hyper-parameters when explaining each model.

ImageNet. We randomly select a subset of samples from the ImageNet validation set, which can be
downloaded from the following link: http://www.image-net.org/. We adopt the most widely used
preprocessing method for the selected images. Specifically, for each image, we resized it to 227× 227,
converted it to BGR format, and subtract the mean value of each channel [103.939, 116.779, 123.68] from
the image. Rather than training our own networks, we downloaded a pretrained VGG16 model, AlexNet
model, and ResNet_v1_50 model from the following link: https://github.com/tensorflow/models/
tree/master/research/slim and http://www.cs.toronto.edu/~guerzhoy/tf_alexnet/. We ap-
plied our proposed method to explain the predictions of these networks on the selected samples.

SST. We downloaded the Stanford Sentiment Treebank (SST1) from the following link: https:
//github.com/harvardnlp/sent-conv-torch/tree/master/data. The data is spited into a training
set of 76, 961 samples and a testing set of 1, 821 samples. We used a pretrained glove embedding
to represent each word in the sentences (sample). The embedding of each word is a vector of 100
dimensions. The pretrained embedding matrix can be downloaded from the following link: http://nlp.
stanford.edu/data/wordvecs/glove.6B.zip. We trained a two-layer CNN with the embeddings as
inputs. The model achieves about 80% accuracy on the testing set. The preprocessed testing data and
the pretrained model can be downloaded from the following link: https://tinyurl.com/y9noqj6l.
We run our explanation method on the pretrained model with the testing samples.

Network intrusion detection (IDS). We use a subset of CSE-CIC-IDS2018 dataset (Sharafaldin
et al., 2018; for Cybersecurity, 2018), a network intrusion dataset contains the benign network traffic
traces and malicious traces generated by three types of attacks: Denial of Service (DoS)-Hulk, SSH-
BruteForce, and Infiltration. The training set contains 88, 661 samples and the testing set has 22, 165
samples. Each sample is represented as a vector of 83 dimensions, where each feature represents the
statistics of network traffic flows (e.g., Number of packets, Number of bytes, Length of packets, etc).
The features are normalized within [0, 1] by using the scikit-learn MinMaxScaler function. We
trained a two-layer MLP to classify whether an input is a benign traffic or an attack (intrusion). The
model reaches 99% accuracy on the testing set. After training the model, we randomly sampled a
subset of 2, 000 testing samples and used our method to derive explanations from the model predictions

9

http://www.image-net.org/
https://github.com/tensorflow/models/tree/master/research/slim
https://github.com/tensorflow/models/tree/master/research/slim
http://www.cs.toronto.edu/~guerzhoy/tf_alexnet/
https://github.com/harvardnlp/sent-conv-torch/tree/master/data
https://github.com/harvardnlp/sent-conv-torch/tree/master/data
http://nlp.stanford.edu/data/wordvecs/glove.6B.zip
http://nlp.stanford.edu/data/wordvecs/glove.6B.zip
https://tinyurl.com/y9noqj6l

co
nv

5_
3

co
nv

5_
2

co
nv

5_
1

co
nv

4_
3

co
nv

4_
2

co
nv

4_
1

co
nv

3_
3

co
nv

3_
2

co
nv

3_
1

co
nv

2_
2

co
nv

2_
1

Terrier

Cascading randomization from top to bottom layers

log
it

fc_
7

fc_
6

Orig
ina

l

co
nv

1_
2

co
nv

1_
1

Gradient
w/ decoys

IntGrad
w/ decoys

SGrad
w/ decoys

Figure S1: Cascading randomization on VGG16 network. The figure shows the original saliency map
(first column) for the terrier. Progression from left to right corresponds to complete randomization
of the pretrained VGG16 network weights from the top layer to the bottom layer. Note that, here,
we followed the visualization method in Adebayo et al. (2018) to show the saliency maps, i.e., 0-1
normalization.

original logit fc7 fc6 53 52 51 43 42 41 33 32 31 22 21 12 11

layer
0.0

0.2

0.4

0.6

0.8

1.0

SS
IM

Gradient w/ decoys
IntGrad w/ decoys
SGrad w/ decoys

Figure S2: Structural similarity index (SSIM) for Cascading Randomization on VGG16 network.

of samples in this subset. The dataset, model, and the descriptions of each feature can be found
in https://tinyurl.com/y9noqj6l.

Hyper-parameter choices. The hyper-parameter choices of the proposed method on three datasets
are shown in Table S1. In the table, ` is the index of the layer within the target model that is selected
to generate the decoy images. The Lagrange multiplier λ controls the weight of ‖F`(x̃)− F`(x)‖∞.
The patch_size and stride control the size and the stride step of each decoy patch. τ is introduced
by Eqn. (2) in Section S1. Note that we set the swappable patch size of SST and IDS data as 1,
because their features may not have a strong local correlation. It should also be noted that we selected
the swappable patch size of ImageNet data as the widely used convolutional kernel size 3 and stride
size 1. We set the number of patches (masks) in each decoy m as 100 for ImageNet, 1 for SST and
IDS. When generating adversarial attack images, we applied the code released by the corresponding
work (Ghorbani et al., 2017) and followed their default setup in our implementation. A preliminary
version of our software system is attached to the supplementary material.

S6 Sanity check for decoy-enhanced saliency maps
As suggested by Adebayo et al. (2018), any valid saliency methods should pass the sanity check in the
sense that the saliency method should be dependent on the learned parameters of the predictive model,
instead of edge or other generic feature detectors. We performed the model parameter randomization
test (Adebayo et al., 2018) on the ImageNet dataset by comparing the output of the proposed saliency
method on a pretrained VGG16 network with the output of the proposed saliency method on a
weight-randomized VGG16 network. If the proposed saliency method indeed depends on the learned
parameters of the model, it is expected that the outputs between the two cases differ substantially.

Following the cascading randomization strategy (Adebayo et al., 2018), the weights of pretrained
VGG16 network are randomized from the top to bottom layers in a cascading fashion. This cascading
randomization procedure is designed to destroy the learned weights successively. As illustrated in
Fig. S1, the cascading randomization destroys the decoy-enhanced saliency maps combined with three
existing saliency methods, qualitatively. The conclusion is also supported by quantitative comparison
measured by the structural similarity index (SSIM), shown in Fig. S2.

10

https://tinyurl.com/y9noqj6l

Bustard

Vending Machine

Macaw

Scooter SF: 11.19 SF: 8.70 SF: 11.43 SF: 9.93 SF: 8.41 SF: 6.78

SF: 10.89 SF: 8.70 SF: 5.16 SF: 0.88 SF: 10.53 SF: 7.15

SF: 9.36 SF: 2.31 SF: 5.06 SF: 2.80 SF: 3.48 SF: 2.10

SF: 4.21 SF: 0.40 SF: 0.007 SF: -0.009 SF: 0.25 SF: 0.07

SF: 8.42 SF: 6.50 SF: 8.20 SF: 4.40 SF: 2.91 SF: 0.83Terrier

Gradient
w/o decoy

Gradient
w/ decoys

SGrad
w/o decoy

SGrad
w/ decoys

Gradient
difference

SGrad
difference

IntGrad
w/o decoy

IntGrad
w/ decoys

IntGrad
difference

(a) Saliency maps generated on AlexNet.

Bustard

Vending Machine

Macaw

Scooter SF: 12.28 SF: 10.61 SF: 11.56 SF: 10.44 SF: 7.78 SF: 6.36

SF: 12.37 SF: 11.86 SF: 8.45 SF: 3.59 SF: 1.80 SF: 1.11

SF: 14.58 SF: 8.64 SF: 8.42 SF: 6.91 SF: 6.93 SF: 4.56

SF: 0.85 SF: 0.26 SF: 0.33 SF: 0.26 SF: 0.89 SF: 0.60

SF: 7.79 SF: 5.71 SF: 4.05 SF: 1.62 SF: 0.79 SF: 0.75Terrier

Gradient
w/o decoy

Gradient
w/ decoys

SGrad
w/o decoy

SGrad
w/ decoys

Gradient
difference

SGrad
difference

IntGrad
w/o decoy

IntGrad
w/ decoys

IntGrad
difference

(b) Saliency maps generated on ResNet.

Figure S3: Visualization of saliency maps under different CNN architectures. Here, the column labels
are as same as those in Fig. 2. The difference figures share the same colorbar as those in Fig. 2.

Table S2: Quantitative comparison of our method and baselines on the network intrusion dataset. We
report the means and standard errors of the fidelity scores.

Salinecy method Fidelity (SF)
Without deocy Decoys with range Constant with range Noise with range Decoys with mean

Gradient 1.80 ± 0.39 1.64 ± 0.40 1.68 ± 0.40 1.78 ± 0.43 2.04 ± 0.40
IntegratedGrad 1.68 ± 0.39 1.57 ± 0.40 1.68 ± 0.44 1.79 ± 0.43 2.19 ± 0.39
SmoothGrad 1.59 ± 0.39 1.57 ± 0.40 1.74 ± 0.44 1.73 ± 0.44 1.87 ± 0.45

S7 Applicability to other CNN architectures
In addition to the VGG16 model, we generated saliency maps for AlexNet (Krizhevsky et al., 2012) and
ResNet (He et al., 2016) trained from the ImageNet dataset. We visualize their saliency maps in Fig. S3.
We observe that our method consistently outperforms the baseline methods, both quantitatively and
qualitatively. Together with the results in Section 4, these results suggest that we can apply our
decoy-enhanced saliency methods to various feed-forward network architectures and expect consistent
performance.

S8 Performances on the network intrusion dataset.
Rather than visualizing the saliency scores through heatmaps, we apply the following to compare the
saliency scores obtained by different methods qualitatively. We ranked the features based on their
saliency scores and compared the ranking obtained by the existing methods with that obtained by
our decoy-enhanced method. “Minimum size of packet in forward direction”, “Minimum length of a
packet”, “Minimum time between two packets sent in the forward direction” are ranked higher by
our methods than the baselines. These features could capture the differences between benign and
malicious traffics. This is because attackers usually tend to rapidly send small packages to discover
the backdoors in the victim network system, while the benign users may send much larger packages
with a longer interval between two packages. On the contrary, features that are not that useful for
intrusion detection (e.g., timestamp, Download and upload ratio) are wrongly pinpointed by the existing
method. However, our methods correctly assign lower importance to these features. Table S2 shows the
fidelity comparisons of different saliency methods. We can observe that our decoys-enhanced methods
outperform the original saliency methods. These results show that our method could pinpoint more
accurate features and achieve a higher fidelity than baselines. We also evaluated three alternatives used
in Section 4: constant perturbation with range aggregation, noise perturbation with range aggregation,
decoys generation with mean aggregation. The results in Table S2 are consistant with those in Fig. 2
and Fig. 3, i.e., our method outperforms these baselines. In summary, the results on this dataset align
with those on the other datasets. This confirms our method’s applicability to multilayer perceptrons.

11

Vending Machine

Bustard

Scooter SF: 11.06 SF: 8.90 SF: 8.12 SF: 7.91 SF: 9.39 SF: 7.68

SF: 9.01 SF: 7.45 SF: 8.32 SF: 7.76 SF: 8.37 SF: 7.38

SF: 1.55 SF: 0.06 SF: 0.09 SF: 0.04 SF: 0.08 SF: 0.07

SF: 8.17 SF: 0.53 SF: 0.69 SF: 0.14 SF: 0.84 SF: 0.30Terrier

ExpGrad
w/o decoy

ExpGrad
w/ decoys

SGradRange
w/o decoy

SGradRange
w/ decoys

ExpGrad
difference

SGradRange
difference

VarGrad
w/o decoy

VarGrad
w/ decoys

VarGrad
difference

SF: 11.45 SF: 9.36

SF: 9.36 SF: 6.72

SF: 0.10 SF: 0.05

SF: 10.91 SF: 0.67

IntUniform
w/o decoy

SF: 0.88 SF: 0.88

SF: 4.36 SF: 4.36

SF: 0.08 SF: 0.08

SF: 0.05 SF: 0.04

GradCAM
w/o decoy

GradCAM
Difference
superimposed

IntUniform
w/ decoys

IntUniform
difference

SF: 0.85 SF: 0.85

SF: 4.35 SF: 4.35

SF: 0.07 SF: 0.07

SF: 0.04 SF: 0.04

GradCAM
w/ decoys
superimposed

GradCAM
difference

GradCAM
w/o decoy
superimposed

GradCAM
w/ decoys

Figure S4: Visualization of saliency maps obtained by original saliency methods and our decoy-enhanced
versions. “ExpGrad” refers to Expected Gradient, “SGradRage” stands for Smoothgrad with range
aggregation, and “IntUniform” represents integrated gradient with uniform baseline. The difference
figures share the same colorbar as those in Fig. 2.

ExpGrad VarGrad SGradRange IntUniform GradCAM
0

5

10

15

Fi
de

lit
y

Without decoy
With decoys

Figure S5: Fidelity comparision of saliency maps obtained by original saliency methods and our
decoy-enhanced versions. “ExpGrad” refers to Expected Gradient, “SGradRage” stands for Smoothgrad
with range aggregation, and “IntUniform” represents integrated gradient with uniform baseline (See
Tab. S7 for more statistics about the performance differences).

S9 Decoys on Other Baselines.
In Section 4, we evaluated our methods on three state-of-the-art saliency methods. Recent re-
search (Sturmfels et al., 2020; Hooker et al., 2019) suggests some variants that improve the performance
of these baseline methods. Here, by using ImageNet data, we evaluate whether our decoy method could
further improve these variants and another widely used saliency method. Specifically, we consider two
variants of the integrated gradient: integrated gradient with uniform baseline (Sturmfels et al., 2020) and
Expected Gradient (Sturmfels et al., 2020); two variants of the SmoothGrad: VarGrad (Hooker et al.,
2019) and Smoothgrad with range aggregation; and one existing saliency method: Grad-CAM (Selvaraju
et al., 2016). For the variants of the integrated gradient and SmoothGrad, we kept the number of
samples the same as the original version and used the default number suggested by existing works - 25
(See https://github.com/PAIR-code/saliency). We will investigate whether increasing the sample
numbers improve the existing saliency methods’ fidelity and robustness in future work.

Fig. S4 and Fig. S5 shows the qualitatively and quantitatively comparison of each method
with/without decoys. As is depicted in Fig. S4, our method helps knock off the noises and im-
prove the visual quality of the saliency maps. Fig. S5 further demonstrates the advantage of our method
in explanation fidelity. Together with the results in Section 4, they demonstrate the generalizability of
our technique to different saliency methods. Note that our method only imposes a minor improvement
on Grad-CAM both qualitatively and quantitatively. As part of future work, we will explore how to
customize our method for Grad-CAM and investigate the effectiveness of applying our technique to
more saliency methods.

S10 Runtime of Our Method

12

https://github.com/PAIR-code/saliency

 =10 =1000=100

SF: 0.37 SF: 0.32 SF: 0.38

=10000

SF: 2.44 SF: 0.34

=100000

SF: 2.30 SF: 0.39 SF: 2.30 SF: 2.36 SF: 2.29 SF: 0.38 SF: 0.35 SF: 0.37 SF: 0.34 SF: 0.39

 =10 =1000=100 =10000 =100000 =10 =1000=100 =10000 =100000

 Gradient w/ decoys IntegratedGrad w/ decoys SmoothGrad w/ decoys

Figure S7: Visualization of saliency maps optimized using different initial λ.

 Gradient w/ decoys
SF: 0.34 SF: 0.30 SF: 0.29

IntegratedGrad w/ decoys
SF: 2.35 SF: 0.38 SF: 2.91 SF: 0.32 SF: 1.81 SF: 2.51 SF: 0.34 SF: 0.40 SF: 0.38

SmoothGrad w/ decoys
SF: 0.28 SF: 0.38

 P = 3 P = 5 P = 7 P = 9 P = 11 P = 3 P = 5 P = 7 P = 9 P = 11 P = 3 P = 5 P = 7 P = 9 P = 11

SF: 2.44

Figure S8: Visualization of saliency maps optimized using different patch size P .

Figure S6: Run time to optimize one decoy and cal-
culate saliency map with the existing methods. The
comparison is conducted in the same CPU/GPU to
ensure fairness. Note that “Grad”, “IntGrad”, and
“SGrad” stands for the vanilla gradient, the inte-
grated gradient, and the SmoothGrad, respectively.

To evaluate the computational cost of our decoy
generations, we carried out the run time com-
parison between optimizing one decoy and calcu-
lating three types of saliency methods, repeated
500 times with respect to different patch masks.
As illustrated in Fig. S6, on average, optimizing
one decoy is 62.3% faster than the fastest vanilla
gradient-based saliency method. For other meth-
ods, the optimization is even less expensive, in a
relative sense.

Recall that, in Section 3.3, we clarify that mul-
tiple decoy masks can be aggregated into a decoy
sample and optimized jointly. This reduces the
runtime significantly. Second, Section S1 clarifies
how we compute the decoy sample size 2n. The
decoy sample size depends on the patch size P
and the number of masks m in one decoy sample.
To ensure a low runtime overhead, we can control
m and P , reduce the decoy size, and thus lower the runtime overhead. Third, Fig. 2(C) shows that a
smaller n (e.g., n=16) can achieve decent interpretation fidelity. The above result further shows that
the time required to generate one decoy is small compared to existing saliency methods. This further
indicates that our method can improve on existing methods without too much computational overhead.

S11 Hyper-parameter sensitivity
We also conduct experiments on the VGG16 to understand the impact of hyper-parameter choices
on the performance of our optimization-based decoy generation method. Specifically, we focus on the
choice of three hyper-parameters: network layer `, initial Lagrange multiplier λ, and patch size.

Accordingly, we first varied the value of ` for VGG16 and compared the differences of the generated
decoy saliencies from the three aforementioned saliency methods. In particular, we set it to range from
the first convolutional layer to the last pooling layer and demonstrate the generated decoy saliencies in
Fig. S15. Note that according to our design, only the convolutional layers and the pooling layers can
be used to generate decoy images. For each saliency method, Fig. S15 demonstrates that the decoy
saliencies generated from different layers for the same image are of similar qualities. Fig. S15 also shows
the mean and standard derivation of the SF scores for each saliency method. These quantitative results
also support the conclusion that our approach is not sensitive to the layer. This is likely because, as
previous research has shown (Chan et al., 2015; Saxe et al., 2011), the final classification results of a
DNN are not highly related to the hidden representations. As a result, generating decoy saliencies for
the same sample with the same label from different layers should yield similar results.

We also varied the initial Lagrange multiplier λ to be
{

101, 102, 103, 104, 105
}
and compared the

differences of the generated decoy saliencies. Fig. S7 depicts the quantitative and qualitative comparison

13

Grad IntGrad SGrad
0

5

10

15

Fi
de

lit
y

Without decoy
Decoys w/ range aggregation
Constant w/ range aggregation
Noise w/ range aggregation
Decoys w/ mean aggregation

(a) Fidelity comparison when selecting top 10% features on ImageNet.

Grad IntGrad SGrad
0

10

20

Fi
de

lit
y

Without decoy
Decoys w/ range aggregation
Constant w/ range aggregation
Noise w/ range aggregation
Decoys w/ mean aggregation

(b) Fidelity comparison when selecting top 40% features on ImageNet.

Figure S9: Fidelity comparison of our methods and baselines under different choices of K (See Tab. S8
and S9 for more statistics about the performance differences).

Grad IntGrad SGrad
0

100

200

Se
ns

iti
vi

ty

Without decoy
With decoys

(a) Top-k attack.

Grad IntGrad SGrad0

100

200

Se
ns

iti
vi

ty

Without decoy
With decoys

(b) Mass center attack.

Grad IntGrad SGrad
10

20

30

40

Se
ns

iti
vi

ty

Without decoy
With decoys

(c) Target attack.

Figure S10: Sensitivity comparison when selecting top 10% features on ImageNet (See Tab. S10 for
more statistics about the performance differences).

results. As shown in the figure, the different choices of initial λ all produce similar saliency maps,
indicating a negligible influence upon our method.

Then, we fixed m and increased the patch size to be {3, 5, 7, 9, 11} and showed the generated decoy
saliencies in Fig. S8. The results show that varying the patch size within a certain range only imposes
a negligible influence upon our method.

Recall that in Section 3.4, we mention that decoy masks are generated by sliding the swappable
patch across a given input. With a given constant stride 1, the number of sliding windows is equal to
(
√
d − P + 1)2. In our implementation, to enable batch computing, we introduce m, which controls

the number of sliding windows in each decoy. Then, the number of decoys is 2
⌊
(
√
d− P + 1)2/m

⌋
.

Fig. S8 shows the results of fixing m as 100 and varying P . In Fig. 2(C), we substantially varied both
P and m and showed that our method is insensitive to the variations in the number of decoys n. Note
that the box bars with the same color in Fig. 2(C) are drawn by fixing P and varying m. Their slight
difference indicates the robustness of our method in the variations of m.

The results in Fig. 2(C), S15, S7, and S8 indicate we can expect to obtain stable decoy saliencies
when the hyper-parameters are subtly varied. This is a critical characteristic because users do not need
to overly worry about setting very precise hyper-parameters to obtain a desired saliency map.

In addition to the hyper-parameters introduced by our methods, we also test the sensitivity of
fidelity evaluation results to the choice of K in the topK normalization. Specifically, we varied K to
select top 10% and 40% important features and redrawn the fidelity/sensitivity comparison figures in
Fig. 2(B)/ Fig. 4(B)∼(D). The results in Fig. S9, S10, and S11 are aligned with those in Fig 2 and 4.

S12 Object localization
We compare our method and the vanilla gradient on the object localization task (Dabkowski & Gal,
2017; Fong & Vedaldi, 2017), where the model was trained with the class label only without access
to any localization data. We carried out Imagenet ILSVRC’14 localization task (Russakovsky et al.,

14

Grad IntGrad SGrad
0

200

400
Se

ns
iti

vi
ty

Without decoy
With decoys

(a) Top-k attack.

Grad IntGrad SGrad0

200

400

Se
ns

iti
vi

ty

Without decoy
With decoys

(b) Mass center attack.

Grad IntGrad SGrad
20

40

60

Se
ns

iti
vi

ty

Without decoy
With decoys

(c) Target attack.

Figure S11: Sensitivity comparison when selecting top 40% features on ImageNet (See Tab. S11 for
more statistics about the performance differences).

Table S3: ImageNet localization accuracy on VGG16 network using different thresholding strategies.

Accuracy Value thresholding (0.25) Energy thresholding (0.25) Mean thresholding (0.25)
Gradient 0.662 0.715 0.662

Gradient w/ decoys 0.722 0.723 0.665

2015) which contains 50K ImageNet validation images with annotated bounding boxes as ground truth.
For each image, we first calculated the gradient-based saliency maps with and without using decoys,
based on the pretrained model. Following the preprocessing steps suggested by Dabkowski & Gal
(2017); Fong & Vedaldi (2017), we then obtained a bounding box from each calculated saliency maps
based on certain thresholds. Specifically, we investigated three thresholding strategies suggested by
Fong & Vedaldi (2017): value thresholding, energy thresholding, and mean thresholding. Following
the evaluation protocol of Dabkowski & Gal (2017); Fong & Vedaldi (2017), we then computed the
Intersect over Union (IoU) of the extracted box and the ground truth. If an IoU is greater than 0.5, the
corresponding box is marked as correct. Table S3 shows that decoy-enhanced saliency maps achieve
higher accuracy than those of the vanilla gradient.

S13 Additional experimental results
Fig. S13, Fig. S12, and Fig. S14 provide more results of the fidelity and robustness evaluation. These
results are consistent with those shown in the Section 4.

S14 Statistics of the Performance differences
In section 4, Section S9, and Section S11, we varied the choice of K in the top-K normalizations,
compared our method with each baseline approach, and showed the fidelity/sensitivity of each approach
in the box-plots. To demonstrate the advantage of our method over the baselines, we further compared
the fidelity/sensitivity difference between our method and the corresponding baseline approach. To be
more specific, given two sets of fidelity/sensitivity scores (sour and sbase) obtained from our method
and a baseline approach respectively, we first computed their difference, i.e., diff = sour − sbase. Then,
we conducted a statistical measure on the values of diff by computing the mean, the standard error,
and the p-value of the paired t-test. For the paired t-test, our null hypothesis is H0 : E[diff] ≥ 0.
This indicates that, if the value of p is larger than a threshold, we cannot reject this null hypothesis,
and have to conclude that our method cannot outperform the corresponding baseline approach. As
we present in Table S4∼Table S11, the overall experiment results align with those shown in the box
plots, demonstrating the superiority of our method over the baselines. But, it should also be noted
that we observed four cases in the SST experiment (see Table S5), where the p-value is larger than 0.5.
This implies that, while our method outperforms existing baseline methods and alternative designs in
general, for some rare cases, alternative designs (e.g., using constants/noises to replace decoys) may
still demonstrate their effectiveness. As part of our future work, we will take a closer look at these
cases and investigate the reason hidden behind this observation.

15

References
Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt, M., and Kim, B. Sanity checks for saliency
maps. In Proc. of NeurIPS, 2018.

Carlini, N. and Wagner, D. Towards evaluating the robustness of neural networks. In Proc. of S&P,
2017.

Chan, T.-H., Jia, K., Gao, S., Lu, J., Zeng, Z., and Ma, Y. PCANet: A simple deep learning baseline
for image classification. IEEE Transactions on Image Processing, 2015.

Dabkowski, P. and Gal, Y. Real time image saliency for black box classifiers. In Proc. of NeurIPS,
2017.

Fong, R. C. and Vedaldi, A. Interpretable explanations of black boxes by meaningful perturbation. In
Proc. of ICCV, 2017.

for Cybersecurity, C. I. Cse-cic-ids2018 on aws. https://www.unb.ca/cic/datasets/ids-2018.html,
2018.

Ghorbani, A., Abid, A., and Zou, J. Interpretation of neural networks is fragile. arXiv:1710.10547,
2017.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. In Proc. of
CVPR, 2016.

Hooker, S., Erhan, D., Kindermans, P.-J., and Kim, B. A benchmark for interpretability methods in
deep neural networks. In Proc. of NeurIPS, 2019.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classification with deep convolutional neural
networks. In Proc. of NeurIPS, 2012.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla,
A., Bernstein, M., et al. Imagenet large scale visual recognition challenge. International Journal of
Computer Vision, 2015.

Saxe, A. M., Koh, P. W., Chen, Z., Bhand, M., Suresh, B., and Ng, A. Y. On random weights and
unsupervised feature learning. In Proc. of ICML, 2011.

Selvaraju, R. R., Das, A., Vedantam, R., Cogswell, M., Parikh, D., and Batra, D. Grad-cam: Visual
explanations from deep networks via gradient-based localization. arXiv:1611.07450, 2016.

Sharafaldin, I., Lashkari, A. H., and Ghorbani, A. A. Toward generating a new intrusion detection
dataset and intrusion traffic characterization. In Prof. of ICISSP, 2018.

Sturmfels, P., Lundberg, S., and Lee, S.-I. Visualizing the impact of feature attribution baselines.
Distill, 2020.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., and Fergus, R. Intriguing
properties of neural networks. arXiv:1312.6199, 2013.

16

https://www.unb.ca/cic/datasets/ids-2018.html

Table S4: Mean, standard error, and p-value of the difference in Fig. 2(B).

Salinecy method Without decoy Constant with range Noise with range Decoys with mean
Mean±Std P-value Mean±Std P-value Mean±Std P-value Mean±Std P-value

Gradient -1.61±3.24 0.014 -1.26±2.29 0.009 -0.51±1.74 0.093 -1.80± 2.15 < 0.001
IntegratedGrad -1.14±3.82 0.087 -0.71±3.41 0.170 -0.06±3.03 0.440 -2.53± 2.25 < 0.001
SmoothGrad -0.41±1.23 0.068 -0.44±1.27 0.058 -0.79±1.22 0.003 -1.80± 2.65 0.002

Table S5: Mean, standard error, and P-value of the difference in Fig. 3(B).

Salinecy method Without decoy Constant with range Noise with range Decoys with mean
Mean±Std P-value Mean±Std P-value Mean±Std P-value Mean±Std P-value

Gradient -0.29±0.57 < 0.001 0.003±0.09 0.921 0.003±0.09 0.912 -0.17±0.51 < 0.001
IntegratedGrad -0.12±0.56 < 0.001 0.001±0.07 0.744 -0.20±0.44 < 0.001 -0.09±0.52 < 0.001
SmoothGrad -0.02±0.52 0.043 -0.02±0.52 0.043 -0.02±0.51 0.029 0.006±0.15 0.959

Table S6: Mean, standard error, and P-value of the difference in Fig. 4(B)∼(D).

Attack Gradient Integrated gradient SmoothGrad
Mean±Std P-value Mean±Std P-value Mean±Std P-value

Top-k -23.52 ± 57.02 0.008 -3.89 ± 2.47 < 0.001 -2.32 ± 21.00 0.349
Mass Center -30.43± 25.48 < 0.001 -6.06 ± 4.56 < 0.001 -2.75 ± 1.85 < 0.001

Target -7.66 ± 3.03 < 0.001 -4.77 ± 1.29 < 0.001 -2.81 ± 2.88 0.002

Table S7: Mean, standard error, and P-value of the difference in Fig. S5.

ExpGrad VarGrad SGradRange IntUniform GradCAM
Mean±Std P-value Mean±Std P-value Mean±Std P-value Mean±Std P-value Mean±Std P-value
-2.26 ± 4.11 0.009 -0.95 ± 1.18 0.001 -0.66 ± 1.51 0.026 -2.98 ± 3.18 < 0.001 -0.08 ± 0.25 0.121

Table S8: Mean, standard error, and p-value of the difference in Fig. S9a.

Salinecy method Without decoy Constant with range Noise with range Decoys with mean
Mean±Std P-value Mean±Std P-value Mean±Std P-value Mean±Std P-value

Gradient -0.87±2.13 0.034 -0.30±1.21 0.126 -0.29±1.01 0.100 -0.91± 1.96 0.021
IntegratedGrad -1.39±2.29 0.005 -1.31±1.64 0.001 -0.79±1.50 0.011 -2.02± 1.91 < 0.001
SmoothGrad -0.79±0.97 < 0.001 -1.16±1.17 < 0.001 -0.58±1.01 0.007 -1.76± 1.69 < 0.001

Table S9: Mean, standard error, and P-value of the difference in Fig. S9b.

Salinecy method Without decoy Constant with range Noise with range Decoys with mean
Mean±Std P-value Mean±Std P-value Mean±Std P-value Mean±Std P-value

Gradient -3.26±3.88 < 0.001 -0.37±3.74 0.320 -1.27±2.51 0.014 -3.73± 2.75 < 0.001
IntegratedGrad -2.31±3.70 0.004 -0.21±2.99 0.374 -1.87±3.08 0.005 -4.33± 3.41 < 0.001
SmoothGrad -0.94±1.21 0.001 -0.94±1.09 < 0.001 -0.48±0.70 0.002 -2.67± 2.92 < 0.001

Table S10: Mean, standard error, and P-value of the difference in Fig. S10.

Attack Gradient Integrated gradient SmoothGrad
Mean±Std P-value Mean±Std P-value Mean±Std P-value

Top-k -8.04 ± 49.69 0.285 -1.58 ± 1.75 0.003 -1.34 ± 16.30 0.386
Mass Center -14.48± 15.68 0.003 -2.98 ± 2.41 < 0.001 -1.87 ± 1.26 < 0.001

Target -3.95 ± 2.42 < 0.001 -2.30 ± 1.06 < 0.001 -1.81 ± 1.96 0.003

Table S11: Mean, standard error, and P-value of the difference in Fig. S11.

Attack Gradient Integrated gradient SmoothGrad
Mean±Std P-value Mean±Std P-value Mean±Std P-value

Top-k -42.64 ± 76.08 0.032 -8.37 ± 4.26 < 0.001 -2.81 ± 23.61 0.338
Mass Center -56.54± 38.27 < 0.001 -10.28±31.85 0.133 -2.51 ± 1.49 < 0.001

Target -13.09 ± 3.60 < 0.001 -8.29 ±2.08 < 0.001 -3.12 ± 3.69 0.005

17

SF: 0.457
SF: 0.038
SF: 0.457
SF: 0.038
SF: 0.073
SF: 0.062

this is one of polanski 's best films
this is one of polanski 's best films
this is one of polanski 's best films
this is one of polanski 's best films
this is one of polanski 's best films
this is one of polanski 's best films

Gradient w/o decoy
Gradient w/ decoys
IntGrad w/o decoy
IntGrad w/ decoys
SGrad w/o decoy
SGrad w/ decoys

SF: 1.003
SF: 0.075
SF: 1.003
SF: 0.084
SF: 0.111
SF: 0.105

No movement no yuks not much of anything
No movement no yuks not much of anything
No movement no yuks not much of anything
No movement no yuks not much of anything
No movement no yuks not much of anything
No movement no yuks not much of anything

Gradient w/o decoy
Gradient w/ decoys
IntGrad w/o decoy
IntGrad w/ decoys
SGrad w/o decoy
SGrad w/ decoys

SF: 0.457
SF: 0.049
SF: 0.457
SF: 0.049
SF: 0.069
SF: 0.031

most new movies have a bright sheen
most new movies have a bright sheen
most new movies have a bright sheen
most new movies have a bright sheen
most new movies have a bright sheen
most new movies have a bright sheen

Gradient w/o decoy
Gradient w/ decoys
IntGrad w/o decoy
IntGrad w/ decoys
SGrad w/o decoy
SGrad w/ decoys

SF: 0.457
SF: 0.039
SF: 0.457
SF: 0.039
SF: 0.076
SF: 0.056

as a singular character study it ‘s perfect
as a singular character study it ‘s perfect
as a singular character study it ‘s perfect
as a singular character study it ‘s perfect
as a singular character study it ‘s perfect
as a singular character study it ‘s perfect

Gradient w/o decoy
Gradient w/ decoys
IntGrad w/o decoy
IntGrad w/ decoys
SGrad w/o decoy
SGrad w/ decoys

SF: 0.457
SF: 0.013
SF: 0.457
SF: 0.007
SF: 0.006
SF: 0.006

a well made and often lovely depiction of the mysteries of friendship
a well made and often lovely depiction of the mysteries of friendship
a well made and often lovely depiction of the mysteries of friendship
a well made and often lovely depiction of the mysteries of friendship
a well made and often lovely depiction of the mysteries of friendship
a well made and often lovely depiction of the mysteries of friendship

Gradient w/o decoy
Gradient w/ decoys
IntGrad w/o decoy
IntGrad w/ decoys
SGrad w/o decoy
SGrad w/ decoys

Figure S12: Visualization of saliency maps on the sentences in SST dataset. The row labels and colorbar
are the same with those in Fig. 3(A).

18

SF: 8.76 SF: 7.79 SF: 7.89 SF: 7.87 SF: 8.74 SF: 7.91

SF: 7.64 SF: 5.04 SF: 8.96 SF: 3.38 SF: 5.95 SF: 4.19

SF: 7.86 SF: 2.13 SF: 7.82 SF: 2.88 SF: 5.53 SF: 4.27

Gradient
w/o decoy

Gradient
w/ decoys

SGrad
w/o decoy

SGrad
w/ decoys

Gradient
difference

SGrad
difference

IntGrad
w/o decoy

IntGrad
w/ decoys

IntGrad
difference

SF: 11.95 SF: 2.44 SF: 12.97 SF: 0.34 SF: 0.81 SF: 0.34

SF: 8.76 SF: 7.34 SF: 6.67 SF: 5.70 SF: 7.83 SF: 6.41

SF: 8.93 SF: 6.46 SF: 8.61 SF: 7.71 SF: 1.52 SF: 0.25

Gradient
w/o decoy

Gradient
w/ decoys

SGrad
w/o decoy

SGrad
w/ decoys

Gradient
difference

SGrad
difference

IntGrad
w/o decoy

IntGrad
w/ decoys

IntGrad
difference

SF: 14.17 SF: 7.82 SF: 12.21 SF: 6.77 SF: 7.58 SF: 6.74

SF: 3.05 SF: 0.08 SF: 0.018 SF: 0.012 SF: 0.076 SF: 0.064

SF: 8.75 SF: 6.51 SF: 8.04 SF: 6.68 SF: 9.60 SF: 9.15

SF: 12.02 SF: 7.47 SF: 10.31 SF: 7.72 SF: 5.34 SF: 4.98

Vending Machine

Volcano

Volcano

Seashore

Cliff

Terrier

Shield

Scotter

Butterfly

Bustard

Figure S13: Visualization of saliency maps on the images in ImageNet dataset. The column labels and
colorbar are the same with those in Fig. 2(A).

SS: 102.42 SS: 77.11 SS: 24.14 SS: 22.18 SS: 63.28 SS: 55.56

SS: 349.18 SS: 241.76 SS: 29.98 SS: 27.60 SS: 40.64 SS: 34.44

SS: 269.87 SS: 183.50 SS: 25.53 SS: 21.81 SS: 41.95 SS: 35.14

Gradient
w/o decoy

Gradient
w/ decoys

SGrad
w/o decoy

SGrad
w/ decoys

Gradient
difference

SGrad
difference

IntGrad
w/o decoy

IntGrad
w/ decoys

IntGrad
difference

SS: 34.35 SS: 27.78 SS: 53.63 SS: 45.22 SS: 2.49 SS: 2.25

SS: 93.31 SS: 61.20 SS: 23.03 SS: 19.23 SS: 33.78 SS: 29.19

SS: 24.10 SS: 16.21 SS: 30.50 SS: 24.81 SS: 27.15 SS: 22.70

Gradient
w/o decoy

Gradient
w/ decoys

SGrad
w/o decoy

SGrad
w/ decoys

Gradient
difference

SGrad
difference

IntGrad
w/o decoy

IntGrad
w/ decoys

IntGrad
difference

SS: 77.48 SS: 56.36 SS: 19.50 SS: 15.97 SS: 10.29 SS: 8.77

SS: 197.97 SS: 138.14 SS: 20.46 SS: 16.50 SS: 14.07 SS: 13.22

SS: 140.91 SS: 138.14 SS: 29.10 SS: 25.06 SS: 13.35 SS: 11.89

SS: 35.97 SS: 28.72 SS: 16.49 SS: 13.82 SS: 32.75 SS: 29.32

SS: 139.94 SS: 121.71 SS: 24.63 SS: 20.68 SS: 23.68 SS: 22.35

SS: 26.98 SS: 23.88 SS: 28.37 SS: 22.34 SS: 16.74 SS: 15.73

Top-k
Attack

Mass
Center
Attack

Target
Attack

Top-k
Attack

Mass
Center
Attack

Target
Attack

Top-k
Attack

Mass
Center
Attack

Target
Attack

Top-k
Attack

Mass
Center
Attack

Target
Attack

Figure S14: Visualization of saliency maps on the perturbed images generated by using three attacks in
VGG16. The column labels are the same with those in Fig. 4(A).

19

co
nv

1_
1

co
nv

1_
2

Max
po

ol_
1

co
nv

2_
1

co
nv

2_
2

Max
po

ol_
2

co
nv

3_
1

co
nv

3_
2

Max
po

ol_
3

co
nv

3_
3

co
nv

4_
1

co
nv

4_
2

Max
po

ol_
4

co
nv

4_
3

co
nv

5_
1

co
nv

5_
2

Max
po

ol_
5

co
nv

5_
3

Bottom layers to top layers

Shield
Gradient
w/ decoys

IntGrad
w/ decoys

SGrad
w/ decoys

(a) The mean and standard derivation of SF score for gradient, integrated gradient and SmoothGrad are:
(10.23, 0.29), (10.37, 0.84), (9.34, 0.51).

co
nv

1_
1

co
nv

1_
2

Max
po

ol_
1

co
nv

2_
1

co
nv

2_
2

Max
po

ol_
2

co
nv

3_
1

co
nv

3_
2

Max
po

ol_
3

co
nv

3_
3

co
nv

4_
1

co
nv

4_
2

Max
po

ol_
4

co
nv

4_
3

co
nv

5_
1

co
nv

5_
2

Max
po

ol_
5

co
nv

5_
3

Bustard

Bottom layers to top layers

Gradient
w/ decoys

IntGrad
w/ decoys

SGrad
w/ decoys

(b) The mean and standard derivation of SF score for gradient, integrated gradient and SmoothGrad are:
(0.07, 0.02), (0.01, 0.003), (0.06, 0.007).

co
nv

1_
1

co
nv

1_
2

Max
po

ol_
1

co
nv

2_
1

co
nv

2_
2

Max
po

ol_
2

co
nv

3_
1

co
nv

3_
2

Max
po

ol_
3

co
nv

3_
3

co
nv

4_
1

co
nv

4_
2

Max
po

ol_
4

co
nv

4_
3

co
nv

5_
1

co
nv

5_
2

Max
po

ol_
5

co
nv

5_
3

Terrier

Bottom layers to top layers

Gradient
w/ decoys

IntGrad
w/ decoys

SGrad
w/ decoys

(c) The mean and standard derivation of SF score for gradient, integrated gradient and SmoothGrad are:
(2.15, 0.50), (0.97, 0.56), (0.19, 0.06).

Figure S15: Demonstrations of decoy-enhanced saliency maps generated from each convolutional and
pooling layer in VGG16.

20

