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ABSTRACT
Outside the highly publicized victories in the game of Go, there
have been numerous successful applications of deep learning in
the �elds of information retrieval, computer vision, and speech
recognition. In cybersecurity, an increasing number of companies
have begun exploring the use of deep learning (DL) in a variety
of security tasks with malware detection among the more popular.
�ese companies claim that deep neural networks (DNNs) could
help turn the tide in the war against malware infection. However,
DNNs are vulnerable to adversarial samples, a shortcoming that
plagues most, if not all, statistical and machine learning models.
Recent research has demonstrated that those with malicious intent
can easily circumvent deep learning-powered malware detection
by exploiting this weakness.

To address this problem, previous work developed defense mech-
anisms that are based on augmenting training data or enhancing
model complexity. However, a�er analyzing DNN susceptibility to
adversarial samples, we discover that the current defense mecha-
nisms are limited and, more importantly, cannot provide theoretical
guarantees of robustness against adversarial sampled-based a�acks.
As such, we propose a new adversary resistant technique that ob-
structs a�ackers from constructing impactful adversarial samples
by randomly nullifying features within data vectors. Our proposed
technique is evaluated on a real world dataset with 14,679 malware
variants and 17,399 benign programs. We theoretically validate the
robustness of our technique, and empirically show that our tech-
nique signi�cantly boosts DNN robustness to adversarial samples
while maintaining high accuracy in classi�cation. To demonstrate
the general applicability of our proposed method, we also conduct
experiments using the MNIST and CIFAR-10 datasets, widely used
in image recognition research.
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1 INTRODUCTION
Malware detection has evolved sigi�cantly over the past. Ap-
proaches have been introduced that range from signature-based
solutions that compare an unidenti�ed piece of code to known
malware to sandboxing solutions that execute a �le within a virtual
environment so as to determine whether the �le is malicious or
not. Unfortunately, these technologies seem to quickly fall behind
in the never-ending ba�le against malware infection. According
to a recent report from Symantec Corporation [26], one million
malware variants hit the Internet every day and go completely
undetected by most of the common cybersecurity technologies in
use today.

Substantial progress in neural network research, or deep learn-
ing (DL), has provided promising alternatives to the cybersecurity
community in the form of automatic feature learning. Recent re-
search has demonstrated that malware detection approaches based
on deep neural networks (DNNs) can recognize abstract complex
pa�erns from a large amount of malware samples. �is could o�er
a far be�er way to detect all types of malware, even in instances of
heavy mutation [2, 7, 8, 14, 17–19, 23, 28].

Despite their potential, deep neural architectures, like all other
machine learning approaches, are vulnerable to what is known as
adversarial samples [3, 6, 25]. �is means that these systems can be
easily deceived by non-obvious and potentially dangerous manipu-
lations [5, 9, 12, 27]. To be more speci�c, an adversary can infer the
model underlying an application, examine feature/class importance,
and identify the features that have greatest signi�cant impact on
correct classi�cation. With this knowledge of feature importance,
an adversary can, with minimal e�ort, cra� an adversarial sample –
a synthetic example generated by slightly modifying a real example
in order to trick deep learning system into “believing” this modi�ed
sample belongs to an incorrect class with high con�dence.

�is �aw has been widely exploited to fool DNNs trained for
image recognition (e.g., [9, 21, 27]). With the broad adoption of
DNNs in malware detection, we speculate malware authors will
also increasingly seek to exploit this vulnerability to circumvent
malware detection. Recent research has already demonstrated that
a malware author can leverage feature amplitude inequilibrium to
bypass malware detectors powered by DNNs [1, 10].

Past research [9, 22] in developing defense mechanisms relies on
strong assumptions, which typically do not hold in many real-world
scenarios. Also, these proposed techniques can only be empirically
validated and do not provide any theoretical guarantees. �is is
particularly disconcerting when they are applied to security-critical
applications such as malware detection.

Here we propose a new technical approach that can be empir-
ically and theoretically guaranteed to be e�ective for malware
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detection and, more importantly, resistant to adversarial manipula-
tion. To be speci�c, we introduce random feature nulli�cation to
both the training and testing phases of DNN models, making the
architectures non-deterministic. �is non-deterministic nature is
primarily useful when a�ackers a�empt to examine feature/class
importance or when a DNN model uses input for classi�cation.
Even if a�ackers could infer critical features and construct a rea-
sonable adversarial sample, the stochasticity we introduce into the
model’s input processing signi�cantly reduces the e�ectiveness of
adversarial samples.

Technically speaking, our random feature nulli�cation approach
can also be viewed as stochastically “dropping” or omi�ing sen-
sory inputs. It can be viewed as a special case of dropout regu-
larization [24], which involves randomly dropping unit activities
(along with their connections), especially in the hidden layers, of
a standard DNN. However, in normal drop-out, a DNN is treated
as a deterministic system at test-time 2 which means that critical
features of the DNN model can still be correctly identi�ed and
manipulated to synthesize adversarial samples. Our approach is
fundamentally di�erent in that we nullify features at both train and
test time. In Section 5, we compare our random feature nulli�cation
with standard drop-out.

�e simple approach proposed is bene�cial for several key rea-
sons. First, random feature nulli�cation makes it much more dif-
�cult for a�ackers to exploit the “blind spots” of DNNs. Second,
our adversary-resistant DNNs maintain desirable classi�cation per-
formance while requiring only minimal modi�cation to existing
underlying architecture. �ird, the technique we propose theoreti-
cally guarantees the resistance of DL to adversarial samples. Lastly,
while this work is primarily motivated by the need to safeguard
DNN models used in malware detection, it should be noted that the
proposed technique is rather general and can be readily applied to
other applications where deep learning proves to be useful, such
as image recognition. We demonstrate this applicability using two
additional, publicly-available datasets in Section 5.

�e rest of the paper is organized as follows. Section 2 provides
background on adversarial samples and in Section 3 a survey of
relevant work. Section 4 presents our technique and its properties.
Experimental results are shown in Section 5, where our technique
is compared to other approaches. Finally, Section 6 summarizes our
work and points our future directions.

2 BACKGROUND
Even though a well-trained model is capable of recognizing out-
of-sample pa�erns, a deep neural architecture can be easily fooled
by introducing perturbations to the input samples that are o�en
indistinguishable to the human eye [27]. �ese so-called “blind
spots”, or adversarial samples, exist because the input space of a
DNN is too broad to be fully explored [9]. Given this, an adversary
can uncover speci�c data samples in the input space that bypass
DNN models. More speci�cally, work [9] has shown that a�ackers
can �nd the most powerful blind spots through e�ective optimiza-
tion procedures. In multi-class classi�cation tasks, the adversarial
2In fact, “inverted” drop-out is applied in practice, which requires an extra division
of the drop-out probability at training time in order to avoid the need for re-scaling
at test-time. �is speci�c implementation is used so that feed-forward inference is
directly comparable to that under standard DNNs.

samples uncovered through this optimization can cause a DNN
model to classify a data point under an incorrect category.

Furthermore, other work [27] shows that for DNN models that
share the same design goal, i.e. recognizing the same image set, all
of these models approximate a common highly complex, nonlin-
ear function. �erefore, a relatively large fraction of adversarial
examples generated from one trained DNN will be misclassi�ed
by other DNN models trained on the same original data set but
with di�erent hyper-parameters. Given a target DNN, we refer to
adversarial samples that are generated from other di�erent DNN
models but still maintain their a�ack e�cacy against the target as
cross-model adversarial samples.

Adversarial samples can be generated by computing the deriva-
tive of the cost function with respect to the network’s input vari-
ables. �e gradient of any input sample represents a direction
vector in this high-dimensional input space. Along this direction,
any small change of this input sample will cause a DNN to generate
a completely di�erent prediction result. �is particular direction
is important since it represents the most e�ective way to degrade
the performance of a DNN. Discovering this particular direction is
done by passing the layer gradients from the output layer all the
way back to the input layer via back-propagation of errors. �e
gradient at the input may then be applied to the input samples to
cra� an adversarial example.

To be more speci�c, de�ne a cost function L (θ ,X ,Y ), where
θ , X and Y denotes the parameters of the DNN, the input dataset,
and the corresponding labels respectively. In general, adversarial
samples are created by adding an adversarial perturbation δX to
real samples. �e fast gradient sign method [9] was proposed for
calculating adversarial perturbations as follows:

δX = ϕ · siдn(JL (X )), (1)
here δX is calculated by multiplying the sign of the gradients of
the real sample X with some coe�cient ϕ. JL (X ) denotes the
derivative of the cost function L (·) with respect to X . ϕ controls
the scale of the gradients to be added.

An adversarial perturbation indicates the actual direction vector
to be added to the real samples. �is vector drives a data point X
towards a direction that the cost function L (·) is most sensitive to.
However, it should be noted that δX must be maintained within a
small scale. Otherwise adding δX will cause signi�cant distortions
to real samples, leaving the manipulation to be easily detected.

3 RELATEDWORK
In order to defend against adversarial samples, recent research has
mainly focused on two di�erent approaches – data augmentation
and model complexity enhancement. In this section, we summarize
these techniques and discuss their limitations as follows.

3.1 Data Augmentation
To resolve the issue of “blind spots” (a more informal name given
to adversarial samples), many methods which could be considered
as sophisticated forms of data augmentation3 have been proposed
(e.g. [9, 11, 20]). In principle, these methods expand the training
3Data augmentation refers to arti�cially expanding the data-set. In the case of images,
this can involve deformations and transformations, such as rotation and scaling, of
original samples to create new variants.
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set by combining known samples with potential blind spots, the
process of which is called adversarial training [9]. Here, we analyze
the limitations of data augmentation mechanisms and argue that
these limitations also apply to adversarial training methods.

Given the high dimensionality of data distributions that a DNN
typically learns from, the input space is generally too broad to be
fully explored [9]. �is implies that, for each DNN model, there
could also be an adversarial space carrying an in�nite amount
of blind spots. �erefore, data augmentation based approaches
must face the challenge of covering these very large spaces. Since
adversarial training is a form of data augmentation, such a tactic
cannot possibly hope to cover an in�nite space.

Adversarial training can be formally described as adding a regu-
larization term known as DataGrad to a DNN’s training loss func-
tion [20]. �e regularization penalizes the directions uncovered
by adversarial perturbations (introduced in Section 2). �erefore,
adversarial training works to improve the worst case performance
of a standard DNN. Treating the standard DNN much like a genera-
tive model, adversarial samples are produced via back-propagation
and mixed into the training set and directly integrated into the
model’s learning phase. Despite the fact that there exists an in�-
nite amount of adversarial samples, adversarial training has been
shown to be e�ective in defending against those which are power-
ful and easily cra�ed. �is is largely due to the fact that, in most
adversarial training approaches [9, 20], adversarial samples can be
generated e�ciently for a particular type of DNN. �e fast gradient
sign method [9] can generate a large pool of adversarial samples
quickly while DataGrad [20] focuses on dynamically generating
them per every parameter update. However, the simplicity and
e�ciency of generating adversarial samples also makes adversarial
training vulnerable when these two properties are exploited to at-
tack the adversarial training method itself. Given that there exists
an in�nite supply of adversarial samples, we would need to repeat
an adversarial training procedure each time a new adversarial ex-
ample is encountered. Let us brie�y consider DataGrad [20], which
could be viewed as taking advantage of adversarial perturbations
to be�er explore the underlying data manifold. While this leads to
improved generalization, it does not o�er any guarantees in cov-
ering all possible blind-spots. In this work, we do not address this
issue by training a DNN model that covers the entire adversarial
space. Rather, our design principle is to increase the di�culty for
adversaries in �nding the adversarial space e�ciently.

3.2 Enhancing Model Complexity
DNN models are already complex, with respect to both the nonlin-
ear function that they try to approximate as well as their layered
composition of many parameters. However, the underlying archi-
tecture is straightforward when it comes to tracing the �ow of
information forwards and backwards, greatly alleviating the e�ort
in generating adversarial samples. �erefore, several ideas [11, 22]
have been proposed to enhance the complexity of DNN models,
aiming to improve the tolerance of complex DNN models with
respect to adversarial samples generated from simple DNN models.

[22] developed a defensive distillationmechanism, which trains a
DNN from data samples that are “distilled” from another DNN. By
using the knowledge transferred from the other DNN, the learned

Input Nullification Hidden OutputHidden

...

.

Figure 1: DNNmodi�ed with a random feature nulli�cation
layer.

DNN classi�ers become less sensitive to adversarial samples. Al-
though shown to be e�ective, this method is still vulnerable. �is
is because both DNN models used in this defense can be approx-
imated by an adversary via training two other DNN models that
share the same functionality and have similar performance. Once
the two approximating DNN models are learned, the a�acker can
generate adversarial samples speci�c to this distillation-enhanced
DNNmodel. Similar to [22], [11] proposed to stack an auto-encoder
together with a standard DNN. It shows that this auto-encoding
enhancement increases a DNN’s resistance to adversarial samples.
However, the authors also admit that this stacked model can also
be easily approximated and exploited.

Given the observation and analysis above, going beyond con-
cealing the adversarial space, we argue that an adversary-resistant
DNN model also needs to be robust against adversarial samples
generated from its best approximation. In light of this argument,
this paper presents a new adversary-resistant DNN that not only
increases the di�culty in �nding its blind spots but also ”immu-
nizes” itself against adversarial samples generated from its best
approximation.

4 RANDOM FEATURE NULLIFICATION
Figure 1 illustrates how a DNN would be modi�ed with our random
feature nulli�cation method. Di�erent from a standard DNN, the
method introduces an additional layer between the input and the
�rst hidden layer. �is intermediate layer is stochastic, serving as a
source of randomness during both training and testing phases. In
particular, it randomly nulli�es or masks the features within the
input. Let us consider image recognition as an example. When
a DNN passes an image sample through the layer, it randomly
cancels out some pixels within the image and then feeds the partially
corrupted image to the �rst hidden layer. �e proportion of pixels
nulli�ed is determined from the hyper parameters µp and σ 2p .

Here, in addition to describing feature nulli�cation and how to
train a model using it, we will explain why our method o�ers some
theoretical guarantees of resistance to adversarial samples and how
it is di�erent from other adversary-resistant techniques.
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4.1 Model Description
Given input samples denoted byX ∈ RN×M , whereN andM denote
the number of samples and features, respectively, random feature
nulli�cation is simply performing element-wise multiplication of
X with ˆIp . Here, ˆIp ∈ RN×M is a mask matrix with the same
dimensions as X . Note that in performing random nulli�cation, it
is inevitable that some feature information, which might be useful
for classi�cation, will be lost. To compensate for this, we choose a
di�erent nulli�cation rate pi for each data sample. We hypothesize
that this process could potentially lead to a be�er exploration of
the input data’s underlying manifold during training, which might
result in slightly be�er classi�cation performance. �is is because
that although DNN models [24] trained with all neurons preserved
can work well on a training set, these models are more likely to
produce worse testing results than those trained with randomly
selected neurons. Recent work [24] inspired us to further increase
the randomness to be added during training by also treating pi as a
random variable. More speci�cally, in our training algorithm, not
only which neurons to be nulli�ed are randomly selected, but also
how many neurons to be nulli�ed are randomly determined.

When training a DNN, for each input sample xi a corresponding
Ipi is generated, where Ipi is a binary vector, with each element
being either 0 or 1. In Ipi , the total number of zeros, determined by
pi , are randomly distributed. Without loss of generality, here we
select two typical random distributions, i.e. the Gaussian distribu-
tion for pi and the uniform distribution for generating Ip . However,
it is also possible to adopt other random distributions for these two
cases. Formally, we denote the number of zeros in Ipi as dM · pi e,
which will be randomly located, where d·e is the ceiling function.
pi is sampled from a Gaussian distribution N(µp ,σ 2p ).

From Figure 1, random feature nulli�cation can be viewed as a
process in which a specialized layer simply passes nulli�ed input
to a standard DNN. As such, the objective function of a DNN with
random feature nulli�cation can be de�ned as follows.

min
θ

N∑
i=1
L

(
f (xi , Ipi ;θ ),yi

)
. (2)

Here, yi is the label of the input xi and θ represents the set of model
parameters. �e random feature nulli�cation process is represented
by function q(xi , Ipi ) = xi � Ipi , where � denotes the Hadamard-
Product and f (xi , Ipi ;θ ) = f (q(xi , Ipi );θ ).

During training, Equation (2) can be solved using stochastic
gradient descent in a manner similar to that of a standard DNN.
�e only di�erence is that for each training sample, the randomly
picked Ipi is �xed during forward and backward propagation until
the next training sample arrives. �is makes it feasible to compute
the derivative of L

(
f (xi , Ipi ;θ ),yi

)
with respect to θ and update

θ accordingly. During the testing process, when model parameters
are �xed, in order to get stable test results, we use the expectation of
the Gaussian distribution N(µp ,σ 2p ) as a substitute for the random
variable pi . Speci�cally, we generate a vector Ip following the same
procedure described earlier, but with p equal to µp .

Backpropagation
Feed-forward

DNN

Feed-forward DNN

Figure 2: Example of generating an adversarial sample and
testing it on a DNN with random feature nulli�cation.

4.2 Analysis: Model Resistance to Adversaries
We now theoretically analyze our model’s ability to resist adver-
sarial samples. First, recall (Section 2) that an adversary needs
to generate adversarial perturbations in order to cra� adversarial
samples. According to Equation 1, the adversarial perturbation is
generated by computing the derivative of the DNN’s cost function
with respect to the input samples.

Now let us assume that an adversary uses the same procedure to
a�ack our proposed model. To be speci�c, the adversary computes
the partial derivative of L

(
f (x̃ , Ip ;θ ), ỹ

)
with respect to x̃ , where x̃

denotes an arbitrary testing sample and ỹ denotes the corresponding
label. More formally, the adversary needs to solve the following
derivative:

JL (x̃ ) =
∂L

(
f (x̃ , Ip ;θ ), ỹ

)
∂x̃

= JL (q) ·
∂q(x̃ , Ip )

∂x̃
.

(3)

where JL (q) = ∂L
(
f (x̃ , Ip ;θ ), ỹ

)
/∂q(x̃ , Ip ). Here, as mentioned

earlier, Ip is a mask matrix used during testing. Once the derivative
above (Equation (3)) is calculated, an adversarial sample can be
cra�ed by adding ϕ · siдn(JL (x̃ )) to x̃ , following [9].

To resolve Equation (3), both JL (q) and ∂q(x̃ , Ip )/∂x̃ need to
be computed. Note that JL (q) can be easily solved using back
propagation of errors. However, the term ∂q(x̃ , Ip )/∂x̃ carries ran-
dom variable Ip . It is this multiplicative random variable Ip itself
that prohibits a�ackers from computing a derivative needed to
produce an adversarial perturbation. If Ip is designed to be additive
instead of multiplicative, the computation of the derivative will
not be a�ected since ∂q(x̃ , Ip )/∂x̃ = ∂(x̃ + Ip )/∂x̃ is equal to an
all-one vector 1. As a result, the exact adversarial perturbation for
x̃ can be easily calculated as JL (q). In addition, prior work [11]
has demonstrated that, using additive Gaussian noise does not ac-
tually improve the robustness of a DNN model against adversarial
samples.

Recall that for each sample, the locations of the zeroes within Ip
are randomly distributed. It is almost impossible for an adversary
to pick up a value for Ip that will match that which was randomly
generated. �erefore, for this adversary, the best practice would be
to approximate the value of Ip . To allow this adversary to make the
best possible approximation, we further assume that the value of p
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is known. With this assumption, one can randomly sample Ip and
treat it as a best approximation I∗p . Using this approximation, the ad-
versary then computes the most powerful adversarial perturbation.
As shown in the top shaded region of Figure 2, for the black-boxed
DNN, we assume the most powerful adversarial perturbation is δ x̃ .
�en, the adversarial perturbation for real sample x̃ is δ x̃ � I∗p .

Assume the adversary uses a synthesized adversarial sample
x̃ +δ x̃ � I∗p to a�ack the system shown in the bo�om shaded region
of Figure 2. As we can see, the synthesized sample must pass
through the the feature nulli�cation layer before passing through
the actual DNN.We describe this nulli�cation in the following form.(

x̃ + δ x̃ � I∗p
)
� Ip =

(
x̃ � Ip

)
+ δ x̃ � I∗p � Ip . (4)

Here, x̃ � Ip is a nulli�ed real sample, and δ � I∗p � Ip represents
the adversarial perturbation added to it. With I∗p � Ip , even though
δ x̃ is the adversarial perturbation that impacts the DNN the most,
this high-impact adversarial perturbation is still distorted and no
longer represents the most e�ective perturbation for fooling the
DNN. In Section 5, we will provide empirical evidence to further
validate this result.

In short, stochasticity, which naturally comes from Ip , is po-
tentially our best defense against adversarial perturbation. It is
important to interpret our particular form of drop-out as a form
of “security through randomness”. Our parametrized feature nul-
li�cation input layer, does not serve as a form of implicit model
ensembling (or Bayesian averaging, which drop-out has been shown
to be equivalent to in the case of single hidden-layer networks),
especially given that randomness is still introduced at test-time.

4.3 Comparison with Existing Defense
Methods

In the following, we thoroughly analyze the limited resistance
provided by existing defense techniques introduced in Section 3.
According to [13, 20, 24], existing defense techniques can be gener-
alized as training a standard DNNwith various regularization terms
(or even more generally as the DataGrad=regularized objective).
More formally, the general objective is as follows:

min
θ
G (θ , x̃ , ỹ) = L (θ , x̃ , ỹ) + γ · R (θ , x̃ , ỹ), (5)

where L (θ , x̃ , ỹ) is the training objective for a standard DNN, and
R (θ , x̃ , ỹ) is a regularization term. Here, γ controls the strength
of the regularization. By adding regularization, (5) penalizes the
direction represented by the adversarial perturbation that is optimal
for cra�ing adversarial samples.

However, existing defense methods that fall under this unifying
framework are still vulnerable to adversarial samples problems, as
shown below. To cra� an adversarial sample from a model trained
by solving (5), an adversary can easily produce an adversarial per-
turbation by computing the derivative with respect to a test sample
x̃ as follows:

JG (x̃ ) =
∂G (θ , x̃ , ỹ)

∂x̃

=
∂
(
L (θ , x̃ , ỹ) + γR (θ , x̃ , ỹ)

)
∂x̃

.

(6)

�is indicates that prior studies only construct DNN models that
are resistant to adversarial samples that target a standard DNN but

do not build resistance to adversarial samples that would be gener-
ated to trick these newly “hardened” models. In addition, as we will
show in Section 5, the added regularization only imposes a limited
penalty to the most e�ective adversarial perturbation. Hence these
methods might still be ine�ective against adversarial samples that
target standard DNNs, especially if an adversary simply increases
the scale factor ϕ when generating adversarial samples.

In other words, according to [9], the space containing both real
samples and adversarial samples is too broad to be exhaustively
explored. In the end, since adversarial training is a form of data
augmentation, it cannot possibly hope to fully solve this problem.
While all machine learning methods are susceptible to a broad space
of adversarial samples, our proposed method, however, is a model-
complexity-based approach that hardly adds any extra parameters,
thus leaving the per-iteration run-time relatively untouched.

5 EVALUATION
In this section, we �rst evaluate our proposed technique and com-
pare it with adversarial training and dropout for a malware clas-
si�cation task using the dataset from [4]. �en we will show that
our proposed method can be integrated with existing adversarial
training methods and compare the combined approach’s perfor-
mance with both standalonemethods – random feature nulli�cation
(RFN) and adversarial training, respectively. Finally, we will demon-
strate the generality of our proposed method by conducting some
experiments in image recognition. In particular, we contrast our
method with adversarial training and dropout on the MNIST [16]
and CIFAR-10 [15] datasets.

5.1 Datasets & Experimental Design
To comprehensively evaluate our method, we measure classi�ca-
tion accuracy as well as model resistance to adversarial samples.
In particular, to evaluate and compare the resistance of all three
defense techniques, we test the DNN models against adversarial
samples generated from the exact models trained either with RFN,
adversarial training, and dropout. �is means that we created three
adversarial sample pools, one for each dataset (i.e., malware dataset,
MNIST and CIFAR-10). �e evaluation of resistance assumes that
adversaries had acquired the full knowledge of each DNN model
(i.e. hyper-parameters) and could construct the most e�ective ad-
versarial samples to the best of their abilities. In this experimental
se�ing, the observed resistance will then re�ect a lower bound on
model resistance against adversarial samples. For each dataset, we
specify how to cra� adversarial samples, especially with respect to
the malware dataset.
Malware. �e malware dataset we experimented with is a collec-
tion of window audit logs4. �e dimensionality of the feature-space
for each audit log sample is reduced to 10,000 according to the
feature select metric used in the prior work [4]. Each feature in-
dicates the occurrence of either a single event or a sequence of
events5, thus taking on the value of 0 or 1. Here, 0 indicates that
the sequence of events did not occur while 1 indicates the opposite.
Classi�cation labels are either 1, indicating a malware variant, or
4Window audit logs are collected using standard, built-in facilities, composed of two
sources–users of a enterprise network as well as sandboxed virtual machine simulation
runs using a set of malicious and benign binaries
5�e number of events in one sequence can be as high as 3.
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Examples of Changed Features

WINDOWS FILE:Execute:[system]\slc.dll,
WINDOWS FILE:Execute:[system]\cryptsp.dll
WINDOWS FILE:Execute:[system]\wersvc.dll,
WINDOWS FILE:Execute:[system]\faultrep.dll
WINDOWS FILE:Execute:[system]\imm32.dll,
WINDOWS FILE:Execute:[system]\wer.dll
WINDOWS FILE:Execute:[system]\ntmarta.dll,
WINDOWS FILE:Execute:[system]\apphelp.dll
WINDOWS FILE:Execute:[system]\faultrep.dll,
WINDOWS FILE:Execute:[system]\imm32.dll

Table 1: Sample of manipulated features in malware dataset
where each row feature contains a sequence of two events
where the events happened in the same order as displayed.

0, indicating a benign program. �e dataset is split into 26,078
training examples, with 14,399 benign so�ware samples and 11,679
malicious so�ware samples, and 6,000 testing samples, with 3,000
benign so�ware samples and 3,000 malicious so�ware samples. �e
task is to classify whether a given sample is benign or malicious.

Adversarial perturbation for malware samples can be computed
according to Equation (1). However, a bit of care must be taken
when generating adversarial samples for the malware dataset. Mal-
ware samples are usually represented by features that take on dis-
crete and �nite values, e.g. records of �le system accesses, types of
system calls incurred, etc. �erefore, it is more appropriate to use
the l0 distance:

| |x̂ − x | |0 < ε, (7)

where x̂ = x + δx represents adversarial samples generated from
legitimate sample x . Note that on the malware data set, the pertur-
bation scale ϕ in (1) is measured by ϵ .

A similar approach [10] of cra�ing adversarial samples for mal-
ware data is realized by adjusting the Jacobian-based saliency map
approach [21] proposed for binary classi�cation case. Furthermore,
malware data contains stricter semantics in comparison to image
data [10]. In our case, each feature of a malware sample indicates
whether or not a potential bit of malware has initiated a certain
�le system access. �erefore, large-scale manipulations across all
features, as is typically done with image data, may break down a
malicious program’s functionality. To avoid this, we restrict the
total number of manipulations that can occur per malware sample
to be as small as possible. In this paper’s se�ing, we set this to be
10. Moreover, since removing certain �le system calls may also
jeopardize a malware’s internal logic, we further restrict the manip-
ulation by only allowing the addition of new �le system accesses.
�is equivocates to only positive manipulations, i.e. changing a
feature from 0 to 1. Finally, since malware manipulation is done
with the intent of fooling a DNNmalware classi�er, there is no need
to modify a benign application such that it is classi�ed as malicious.
�erefore, in our experiments we only generate adversarial samples
from the malware data points. In Table 1, we show a few examples
of features added to a malware sample. �ese added features only
cause the malware to call several dynamically linked library �les
without damaging the program’s malicious intent.
MNIST & CIFAR-10 Data Sets. �e MNIST dataset is composed
of 70,000 greyscale images (of 28×28, or 784, pixels) of handwri�en

Expectation of
nulli�cation rates (%)

Malware
Accuracy (%) Resistance (%)

10 95.22 36.46
20 94.67 36.76
30 93.92 38.56
40 95.20 45.19
50 93.18 51.43
60 93.77 49.03
70 93.10 53.96
80 93.08 62.30
90 90.88 64.86

Table 2: Classi�cation accuracy vs. model resistance with
various feature nulli�cation rates on a malware dataset.
Note that the nulli�cation rate hyper-parameter p is simply
an expectation (see detail in Section 4), while the other hy-
per parameter σ is set to be 0.05.

digits, ranging from 0 to 9. �e dataset is split into a training set of
60,000 samples and a test set of 10,000 samples.

�e CIFAR-10 dataset consists of 60,000 images, divided into
10 classes. �e training split contains 50,000 samples while the
test split contains 10,000 samples. Since the samples of CIFAR-10
dataset are color images, each image is made up of 32×32 pixels
where each pixel is represented by three color channels (i.e., RGB).

For the MNIST and CIFAR-10 datasets, we generate adversarial
samples by simply adding the adversarial perturbation δx , intro-
duced in Section 2), directly to the original image (since feature
values are continuous/real-valued). �e degree of manipulation is
controlled by selecting di�erent ϕ, as in Equation (1).

5.2 Malware Classi�cation Results
Sensitivity to Nulli�cation Rate We �rst implement a group of
experiments to quantify the e�ect that nulli�cation rates have on
model classi�cation accuracy as well as model resistance. More
speci�cally, we allow the nulli�cation rate to range from 10% to
90% with 10% increments, both at training and testing time. By
comparing each experiment result, we may then select the optimal
nulli�cation rate. We then integrate our defense mechanism with
adversarial training and compare it against all aforementioned
methods.

Measures of classi�cation accuracy and model resistance, cor-
responding to di�erent nulli�cation rates, are shown in Table 2.
As observed in Table 2, the classi�cation accuracy of trained mod-
els decreases when the nulli�cation rate is increased except when
nulli�cation rate is at 40% or 60%. �ese two rates may roughly
imply the proportion of noise contained within the original dataset.
�e average classi�cation accuracy is 93.66% while the highest
achieved is 95.22, when nulli�cation rate is 10%. �is shows us that
classi�cation performance is more negatively impacted as more
important features are discarded. Note that the accuracy remains at
a surprisingly high value even when the nulli�cation rate reaches
90%. �is aligns with the fact that the malware data is quite sparse.

On the contrary, as shown in Table 2, model resistance shows the
opposite trend. Maximum resistance against adversarial samples is
reached at a 90% nulli�cation rate. Clearly, with such a high nul-
li�cation rate, more carefully manipulated features are discarded.
�e di�erent trends for both classi�cation accuracy and resistance
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Defense Methods Malware
Accuracy (%) Resistance (%)

Standard 93.99 30.00
Dropout 93.16 13.96

Adv. Training 92.68 26.07
RFN 93.08 62.30
RFN &

Adv. Training 94.81 68.77

Table 3: Classi�cation accuracy vs. model resistance of dif-
ferent learning methods on the malware dataset. Dropout
rates are 50% and feature nulli�cation rates are 80%. ‘Adv
Training’ means ”adversarial training.” Note that ’Standard’
means standard deep neural architecture without any regu-
larization.

demonstrate well the trade-o� between achieving one of the two
key goals (i.e., accuracy and robustness). By examining Table 2, we
adopt 80% as our feature nulli�cation rate expectation for experi-
ments that follow, as the trained model with this nulli�cation rate
maintains the best balance between resistance and accuracy.
Comparative ResultsNext, we implement �ve distinct DNNmod-
els by training them with di�erent learning techniques as speci�ed
in Table 3. We present the architecture of these DNNmodels as well
as the corresponding hyper-parameters in Table 7, 6, 8 and 9. With
certain perturbations added to the data samples, Table 3 �rst shows
that the standard DNN model exhibits poor resistance when classi-
fying adversarial samples. Surprisingly, as shown for dropout and
adversarial training, these two methods yield even worse resistance
compared to the standard DNN. �is strengthens our previous anal-
ysis in Section 4. Although these mechanisms have been shown
to provide certain resistance to already seen adversarial samples
and so-called ‘cross-model’ adversarial samples 6, they are even
more vulnerable to more speci�cally cra�ed adversarial samples.
�ese results are also consistent with those reported in previous
work [11]. �is implies that the regularization involved in adversar-
ial training and dropout o�er poor general resistance to adversarial
examples.

In comparison, RFN provides a signi�cantly be�er resistance
against adversarial samples, as is shown in Table 3. �e model
resistance a�orded by our method improves more than 100% (rela-
tive error) when comparing with standard DNN. Recall that RFN
can also be viewed as a preprocessing approach for the successive
DNN. As such, it can be combined with other existing defense
mechanisms. It is expected that such a combination would further
improve model robustness. In order to verify this, we next combine
RNF with adversarial training and compare the hybrid approach to
both standalone RFN and adversarial training.

Table 3 speci�es the classi�cation accuracy and model resistance
of the hybrid technique. We observe that the combined technique
does indeed provide be�er resistance when compared to standalone
RFN. �is may due to the fact that RFN and adversarial training
penalize adversarial samples in two di�erent manners, and an en-
semble of the two favorably ampli�es the model resistance that
each technique induces. From Table 3, we also notice that both

6Adversarial samples that are cra�ed from a di�erent DNN that is built to approximate
some standard targeted DNN.

Expectation of
nulli�cation rates

MNIST CIFAR-10

Accuracy Resistance
ϕ = 0.15 Accuracy Resistance

ϕ = 0.15
10% 98.17% 70.39% 80.01% 55.87%
20% 98.09% 73.55% 77.62% 59.55%
30% 97.89% 78.31% 75.95% 61.63%
40% 97.53% 81.49% 74.49% 65.59%
50% 96.78% 83.68% 74.02% 67.85%

Table 4: Classi�cation accuracy vs. model resistance with
various feature nulli�cation rates on MNIST and CIFAR-10.
Hyper parameter σ is also set to be 0.05 in this evaluation.

standalone RFN and aforementioned combined approach do slightly
but noticeably reduce classi�cation accuracy. However, the combi-
nation of RFN and adversarial training results in near-negligible
degradation. �is indicates that RFN, either standalone or when
combinedwith adversarial training, provides much be�er resistance
either adversarial training and dropout on the malware dataset.

5.3 Image Recognition Results
In the following experiments, we examine the generality of our
proposed method by applying it to the MNIST and CIFAR-10 image
recognition tasks. For MNIST, we build a standard feed-forward
fully connected DNN, while for CIFAR-10, we build a convolutional
neural network (CNN). Similar to the experiments implemented on
malware dataset, we also implement two groups of experiments,
one for determining the optimal p on each dataset, and another for
comparing between di�erent defense technologies.

As is shown in Table 4, the trend of accuracy and resistance are
consistent with that found in the malware experiments. It should
be noted that, since the malware samples are highly sparse in the
feature space, we test our method with nulli�cation rate varies in
a wide range from 10% to 50%. However, the image data sets are
far less sparse. In Table 4, maximum resistance against adversarial
image samples is reached at 50% nulli�cation rate. With respect to
classi�cation accuracy, our proposed method demonstrates roughly
similar performance at various nulli�cation rates. Based on this
result, we adopted 50% as our feature nulli�cation rate in the ex-
periments to follow.

In Table 5, we show measures of classi�cation accuracy and
model resistance of all aforementioned approaches on the MNIST
and CIFAR-10 datasets. Much as in the malware experiments, we
further evaluate our RFN method combined with adversarial train-
ing on both datasets. In Table 5, we also measure the resistance of
these DNN models against various coe�cients ϕ.

As is shown in Table 5, adversarial samples generated from a
standard DNN are capable of lowering the accuracy of the standard
DNN to as low as 0.01% on MNIST and 10.68% on CIFAR-10. In
contrast, all of the investigated defense mechanisms yield improved
resistance, with, again, models trained with RFN reaching the best
level of resistance. In addition, the combination of RFN with adver-
sarial training achieves the best resistance of 91.28 on MNIST and
74.12% on CIFAR-10. �ough di�erent than in the case of malware
classi�cation, both dropout and adversarial training alone do pro-
vide somewhat improved resistance on both datasets. �is indicates
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Learning
Technology

MNIST CIFAR-10

Accuracy Resistance Accuracy Resistance
ϕ = 0.15 ϕ = 0.25 ϕ = 0.35 ϕ = 0.15 ϕ = 0.25 ϕ = 0.35

Standard 98.43 8.19 0.56 0.01 73.59 19.48 13.51 10.68
Dropout 98.61 19.51 3.86 0.96 81.07 17.43 16.59 16.40

Adv Training 97.46 67.68 28.37 7.62 80.62 33.97 19.76 13.73
RFN 96.78 83.69 71.44 60.69 74.02 67.85 51.89 41.29

Adv Training & RFN 96.11 91.28 84.92 78.18 74.12 71.03 55.49 49.84
Table 5: Classi�cation accuracy vs. model resistance with di�erent learning methods, under di�erent ϕ, for both MNIST and
CIFAR-10. In this table, dropout rates and feature nulli�cation rates are set 50% for both datasets.

Learning Technologies Hyper Parameters
DNN Structure Activation Optimizer Learning Rate Dropout Rate Batch Size Epoch

Standard DNN 784-784-784-784-10 Relu SGD 0.1 × 100 25
Dropout 784-784-784-784-10 Relu SGD 0.1 0.5 100 25

Adv. Training 784-784-784-784-10 Relu SGD 0.01 0.5 100 70
RFN 784-784-784-784-10 Relu SGD 0.1 0.25 100 25

RFN & Adv. Training 784-784-784-784-10 Relu SGD 0.01 0.25 100 70
Table 6: �e hyper parameters of MNIST models. Note that standard DNN stands for DNN trained without any regularization.

Learning Technology Hyper Parameters
DNN Structure Activation Optimizer Learning Rate Dropout Rate Batch Size Epoch

Standard DNN 5000-1000-100-2 Relu Adam 0.001 × 500 20
Dropout 5000-1000-100-2 Relu Adam 0.001 0.5 500 20

Adv. Training 5000-1000-100-2 Relu SGD 0.01 0.5 500 40
RFN 5000-1000-100-2 Relu Adam 0.001 0.5 500 15

RFN & Adv. Training 5000-1000-100-2 Relu SGD 0.01 0.5 500 40
Table 7: �e hyper parameters of Malware models.

Learning Technology Hyper parameters
Activation Optimizer Learning rate Dropout rate Batch Size Epoch

Standard DNN Relu Adam 0.001 × 128 50
Dropout Relu Adam 0.001 0.5 128 50

Adv. Training Relu SGD 0.01 0.5 128 50
RFN Relu Adam 0.001 0.5 128 50

RFN & Adv. Training Relu SGD 0.01 0.5 128 50
Table 8: �e hyper parameters of CIFAR-10 models, in this experiment we use CNN instead of standard DNN

that the resistance provided by these methods might be highly de-
pendent on the data type (images, in this case). In particular, since
adversarial training is designed to handle adversarial samples, it
demonstrates much be�er resistance when compared directly to
dropout, though both methods o�er model regularization.

As for classi�cation accuracy, dropout achieves the highest accu-
racy on both datasets. For MNIST dataset, both RFN and adversarial
training, as well as their combination, do trade some classi�cation
accuracy for be�er resistance. However, for the CIFAR-10 dataset,
these methods demonstrate slightly improvement for accuracy. �is
is due to the fact that the CIFAR-10 task is much more complex
than that of MNIST, hence the regularization provided by all of
these methods leads to improved generalization. In general, despite
the minor accuracy degradation caused by using RFN or the hy-
brid method, the signi�cant improvement over resistance in both
datasets demonstrates that our proposed method is quite promising
for classi�cation tasks when resistance to adversarial samples is

important. Finally, our method is agnostic to the choice of the DNN
architecture, given that we evaluate RFN with both feed-forward
fully connected DNNs and CNNs (as evidenced in Table 5).

6 CONCLUSION
Here we proposed a simple method for constructing deep neural
network models that are robust to adversarial samples. Our design
is based on a thorough analysis of a neural model’s vulnerability
to adversarial perturbation as well as the limitations of previously
proposed defenses. Using our proposed Random Feature Nulli�ca-
tion, we have shown that it is impossible for an a�acker to cra� a
speci�cally designed adversarial sample that can force a DNN to
misclassify its inputs. �is implies that our proposed technology
does not su�er, as previous methods do, from a�acks that rely on
generating model-speci�c adversarial samples.

We apply our method to a malware dataset and empirically
demonstrated that we signi�cantly improve model resistance with
only negligible sacri�ce of accuracy, compared to other defense
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Layer type Learning Technology
Standard DNN Dropout Adv. Training RFN RFN & Adv. Training

Convolutional 64 �lter(3 × 3) 64 �lter(3 × 3) 64 �lter(3 × 3) 64 �lter(3 × 3) 64 �lter(3 × 3)
Convolutional 64 �lter(3 × 3) 64 �lter(3 × 3) 64 �lter(3 × 3) 64 �lter(3 × 3) 64 �lter(3 × 3)
Max pooling 2 × 2 2 × 2 2 × 2 2 × 2 2 × 2
Convolutional 72 �lter(3 × 3) 72 �lter(3 × 3) 128 �lter(3 × 3) 128 �lter(3 × 3) 128 �lter(3 × 3)
Convolutional 72 �lter(3 × 3) 72 �lter(3 × 3) 128 �lter(3 × 3) 128 �lter(3 × 3) 128 �lter(3 × 3)
Max pooling 2 × 2 2 × 2 2 × 2 2 × 2 2 × 2
Fully Connect 512 units 512 units 256 units 256 units 256 units
Fully Connect 256 units 256 units 256 units 256 units 256 units

So�max 10 units 10 units 10 units 10 units 10 units
Table 9: �e network structure of CIFAR-10 models.

mechanisms. Cross-data generality was also demonstrated through
experiments on image recognition. Future work will entail investi-
gating the performance of our method to an even wider variety of
applications.
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