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Abstract

With the rapid development of deep reinforcement learning (DRL) techniques,
there is an increasing need to understand and interpret DRL policies. While recent
research has developed explanation methods to interpret how an agent determines
its moves, they cannot capture the importance of actions/states to a game’s final
result. In this work, we propose a novel self-explainable model that augments a
Gaussian process with a customized kernel function and an interpretable predictor.
Together with the proposed model, we also develop a parameter learning procedure
that leverages inducing points and variational inference to improve learning effi-
ciency. Using our proposed model, we can predict an agent’s final rewards from its
game episodes and extract time step importance within episodes as strategy-level
explanations for that agent. Through experiments on Atari and MuJoCo games, we
verify the explanation fidelity of our method and demonstrate how to employ inter-
pretation to understand agent behavior, discover policy vulnerabilities, remediate
policy errors, and even defend against adversarial attacks.

1 Introduction

Deep reinforcement learning has shown great success in automatic policy learning for various
sequential decision-making problems, such as training AI agents to defeat professional players in
sophisticated games [74, 65, 24, 37] and controlling robots to accomplish complicated tasks [33,
38]. However, existing DRL agents make decisions in an opaque fashion, taking actions without
accompanying explanations. This lack of transparency creates key barriers to establishing trust in an
agent’s policy and scrutinizing policy weakness. This issue significantly limits the applicability of
DRL techniques in critical application fields (e.g., finance [47] and self-driving cars [11]).

To tackle this limitation, prior research (e.g., [9, 13, 73]) proposes to derive an explanation for a target
agent’s action at a specific time step. Technically, this explanation can be obtained by pinpointing the
features within the agent’s observation of a particular state that contribute most to its corresponding
action at that state. Despite demonstrating great potential to help users understand a target agent’s
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individual actions, they lack the capability to extract insights into the overall policy of that agent. In
other words, existing methods cannot shed light on the general sensitivity of an agent’s final reward
from a game in regards to the actions/states in that game episode. Consequently, these methods fall
short in troubleshooting an agent’s policy’s weaknesses when it fails its task.

We propose a novel explanation method to derive strategy-level interpretations of a DRL agent. As
we discuss later in Section 3, we define such interpretations as the identification of critical time steps
contributing to a target agent’s final reward from each game episode. At a high level, our method
identifies the important time steps by approximating the target agent’s decision-making process
with a self-explainable model and extracting the explanations from this model. Specifically, given a
well-trained DRL agent, our method first collects a set of episodes and the corresponding final rewards
of this agent. Then, it fits a self-explainable model to predict final rewards from game episodes. To
model the unique correlations in DRL episodes and enable high-fidelity explanations, rather than
simply applying off-the-shelf self-explanation techniques, we develop a novel self-explainable model
that integrates a series of new designs. First, we augment a Gaussian Process (GP) with a customized
deep additive kernel to capture not only correlations between time steps but, more importantly, the
joint effect across episodes. Second, we combine this deep GP model with our newly designed
explainable prediction model to predict the final reward and extract the time step importance. Third,
we develop an efficient inference and learning framework for our model by leveraging inducing points
and variational inference. We refer to our method as “Strategy-level Explanation of Drl aGEnts” (for
short EDGE). 2

With extensive experiments on three representative RL games, we demonstrate that EDGE outperforms
alternative interpretation methods in terms of explanation fidelity. Additionally, we demonstrate how
DRL policy users and developers can benefit from EDGE. Specifically, we first show that EDGE could
help understand the agent’s behavior and establish trust in its policy. Second, we demonstrate that
guided by the insights revealed from our explanations, an attacker could launch efficient adversarial
attacks to cause a target agent to fail. Third, we demonstrate how, with EDGE’s capability, a model
developer could explain why a target agent makes mistakes. This allows the developer to explore
a remediation policy following the explanations and using it to enhance the agent’s original policy.
Finally, we illustrate that EDGE could help develop a defense mechanism against a newly emerging
adversarial attack on DRL agents. To the best of our knowledge, this is the first work that interprets
a DRL agent’s policy by identifying the most critical time steps to the agent’s final reward in each
episode. This is also the first work that demonstrates how to use an explanation to understand agent
behavior, discover policy vulnerabilities, patch policy errors, and robustify victim policies.

2 Related Work

Past research on DRL explanation primarily focuses on associating an agent’s action with its obser-
vation at a particular time step (i.e., pinpointing the features most critical to the agent’s action at a
specific time). Technically, these methods can be summarized in the following categories.

• Post-training explanation is a method that utilizes and extends post-training interpretation ap-
proaches (e.g., [56, 28, 36, 35]) to derive explanation from a DRL agent’s policy/value network
and thus treat it as the interpretation for that DRL agent (e.g., [9, 44, 32, 68, 20, 72]).

• Model approximation is an approach that employs a self-interpretable model to mimic the target
agent’s policy networks and then derives explanation from the self-interpretable model for the
target DRL agent (e.g., [13, 22, 55, 14, 59, 58, 87, 85]).

• Self-interpretable modeling is an approach different from the model approximation techniques
above. Instead of mimicking the target agent’s policy network, self-interpretable modeling builds a
self-explainable model to replace the policy network. Since the new model is interpretable, one can
easily derive an explanation for the target agent (e.g., [92, 62, 82, 42]).

• Reward decomposition is a method that re-engineers a DRL agent’s reward function to make the
reward gained at each time step more meaningful and explainable. With the more meaningful
reward in hand, at each time step, one could use the instant reward gain to interpret the agent’s
action (e.g., [73, 46, 54]).

2The source code of EDGE can be found in https://github.com/Henrygwb/edge.
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From the objective perspective, our work is fundamentally different from the above DRL explanation
research. Rather than pinpointing the features – in an observation – critical for an agent’s action, our
work identifies the critical time steps contributing to the agent’s final reward. Using our explanation,
one can better understand the agent’s policy, unveil policy weakness, and patch policy errors (as
shown in Section 5). In Supplement S7, we further conduct a user study to demonstrate the superiority
of our method against the above explanation approaches in pinpointing good policies and performing
policy forensics. Note that there are two other methods that also understand a DRL policy through
the agent’s previous memories [49, 23]. These works are fundamentally different from ours in two
perspectives. First, both methods have a different explanation goals from our work. Specifically,
Koul et al. [49] focuses on identifying whether the action at each time step depends more on the
current observation or the previous states. The method proposed in [23] pinpoints the important steps
w.r.t. the subsequent transitions in the FSM extracted from the target agent rather than the final result
of an episode. Second, both methods can be applied only to white-box RNN policies, whereas our
method is applicable to DRL policies with arbitrary network structures.

3 Key Technique

3.1 Problem Setup

Consider a DRL game with an agent trained with Q-learning [86, 60] or policy gradient [48, 69, 70].
Our work aims to explain this agent’s policy by identifying the important steps contributing most to a
game episode’s final reward/result. To ensure practicability, we allow access only to the environment
states, agent’s actions, and rewards. We assume the availability of neither the value/Q function
nor the policy network. Formally, given N episodes T = {X(i), yi}i=1:N of the target agent,
X(i) = {s(i)t ,a

(i)
t }t=1:T is the i−th episode with the length T , where s

(i)
t ∈ Rds and a

(i)
t ∈ Rda are

the state and action at the time step t. yi is the final reward of this episode.3 Our goal is to highlight
the top-K important time steps within each episode X(i).

Possible Solutions and Limitations. The most straightforward approach of identifying important
time steps is to use the output of the value/Q network as indicators and pinpoint the time steps with the
top K highest value/Q function’s outputs as the top K critical steps. However, since we do not assume
the availability of these networks, this method is not applicable to our problem. A more realistic
method is to fit a seq2one model (i.e., RNN) that takes as input the state-action pairs in an episode and
predicts the final reward of that episode. With this prediction model, one could utilize a post-training
explanation method to derive the time step importance. However, existing post-training explanation
techniques usually require approximating the target DNN with more transparent models, which
inevitably introduces errors. Additionally, many post-training methods are vulnerable to adversarial
attacks [61, 30, 94] or generate model-independent explanations [1, 64, 2, 78]. As we will show
later in Section 4 and Supplement S3&S5, these limitations jeopardize the post-training explanations’
fidelity. A more promising direction is to fit a self-explainable model to predict the final reward.
Existing research has proposed a variety of self-explanation methods. Most of them do not apply
to our problem because they either cannot derive feature importance as explanations [5, 52, 50, 18],
cannot be applied to sequential data [21, 27, 12], or require explanation ground truth [16, 66]. In this
work, we consider two self-explainable models that are designed to fit and explain sequential data –
an RNN augmented with attention [10, 39, 34] and rationale net [51]. Technically, both models have
the form of g(θ(x)� x), where θ(·) is a weight RNN or an attention layer and g(·) is the prediction
RNN. The output of θ(·) can be used to identify the important steps in the input sequence. Despite
extracting meaningful explanations, recent research [45, 89, 17] reveals that the explanations given
by θ(·) cannot faithfully reflect the associations (i.e., feature importance) learned by the subsequent
prediction model g(·), leading to an even lower fidelity than the post-training explanations in some
applications. Additionally, these models are not designed to explain an RL agent and cannot fully
capture the dependencies within the episodes of that agent. Specifically, the episodes collected from
the same agent tend to exhibit two types of dependencies: dependency between the time steps within
an episode and the dependency across different episodes. Although they consider the dependency

3For the games with delayed rewards, such as MuJoCo [84] and Atari Pong [8], where a non-zero reward rT
is assigned only to the last step of a game, we use rT as yi. For the games with instant rewards (e.g., OpenAI
CartPole [15]), we compute an episode’s total reward as yi, i.e., yi =

∑
t rt.
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Figure 1: Overview of EDGE with a constant prediction mixing weight.

within each input sequence, these methods cannot capture the correlations between different inputs.
As is shown in Section 4 and Supplement S3&S5, this also jeopardizes their explanation fidelity.

3.2 Explanation Model Design of EDGE

In this work, we design a novel self-explainable model by adopting a very different design than
existing methods. First, to better capture the associations (i.e., feature importance) learned by the
prediction model, we add the explainable module to the final layer rather than the input layer of the
prediction model. Formally, our model can be written as g(f(x)), where f(·) is a feature extractor
and g(·) is an explainable prediction model. Second, we design a deep Gaussian Process as the feature
extractor to capture the correlations between time steps and those across different episodes, which
are often exhibited in a set of episodes collected from the same DRL agent. In addition to capturing
different levels of correlations, another advantage of deep GPs over typical DNNs is that GPs model
the joint distribution of the output signals, enabling access to the output signals’ uncertainty. Finally,
we design an interpretable Bayesian prediction model to infer the distribution of final rewards and
deliver time step importance. Below, we first give an overview of our proposed model. Then, we
describe how to adapt the traditional GP model to our problem, followed by the design of the final
prediction model.

Overview. As shown in Fig 1, given an episode of the target agent X(i), EDGE first inputs it into a
RNN encoder, which outputs the embedding of each time step in this episode {h(i)

t }t=1:T . EDGE
also passes the last step’s embedding through a shallow MLP to obtain an episode embedding e(i).
Then, EDGE adopts our proposed additive GP framework to process {h(i)

t }t=1:T and e(i) and obtains
a latent representation of the whole episode f

(i)
1:T . As introduced later, this representation is able to

capture the correlations between time steps and those across episodes. Finally, EDGE inputs f (i)1:T into
our prediction model f (i)1:T and get the predicted final reward of the input episode. As detailed later,
our prediction model is designed based on a linear regression, whose regression coefficient can be
used to identify important time steps within in the input episode.

Additive GP with Deep Recurrent Kernels. Gaussian Process defines a distribution over an
infinite collection of random variables, such that any finite subset of variables follows a multivariate
Gaussian distribution [63]. In Statistical modeling, GP defines the prior of a non-parametric function
f : X → R. Formally, if f has a GP prior, i.e., f ∼ GP(0, kγ),where kγ(·, ·) is a positive semi-
definite kernel function parameterized by γ, any finite collections of f ∈ RN follows a multivariate
Gaussian distribution (f |X) ∼ N (0,KXX). Here, KXX ∈ RN×N is the covariance matrix, with
(KXX)ij = kγ(xi,xj). In our model, we adopt the widely applied square exponential (SE) kernel
function: kγ(xi,xj) = exp

(
− 1

2 (xi − xj)
TΘk(xi − xj)

)
, with γ = Θk. Traditional GP with SE

kernel [63] assumes the input space is Euclidean, which is usually invalid for real-world data with
high-dimensional inputs [3]. To tackle this challenge, recent research [91, 53] proposes to conduct
dimensional reduction via a DNN and then apply a GP to the DNN’s latent space. They show that the
resultant deep kernel models achieve similar performance to DNNs on complicated datasets.

In our model we capture the sequential dependency within an episode by using an RNN as the deep
net inside the kernel function. Specifically, given an episode X(i), we first concatenate the state and
action (i.e., x(i)

t = [s
(i)
t ,a

(i)
t ]), input them into an RNN hφ, and obtain the latent representation of

this episode: {h(i)
t }t=1:T , where h

(i)
t ∈ Rq is the state-action embedding at the time t. We also

4



compute an episode embedding by passing the last step’s hidden representation through a shallow
MLP eφ1

: h
(i)
T → e(i) ∈ Rq. After obtaining {h(i)

t }t=1:T and e(i), we then adopt the additive GP
framework to capture the correlations between time steps and those across episodes. Formally, an
additive GP is the weighted sum of J independent GPs, i.e., f =

∑
J αjfj . Here, fj ∼ GP(0, kj)

is the j-th GP component, in which the covariance function kj is typically applied to a subset of
input features. By assigning every component a GP prior, one can ensure that the mixed-signal f
also follows a GP prior [25]. Following this framework, we construct our deep GP model as the
sum of two components ft and fe. Specifically, ft ∼ GP(0, kγt) models the correlations between
time-steps, where the covariance between the t-th steps in episode i and the k-th steps in episode j can
be computed by kγt(h

(i)
t ,h

(j)
k ). Going beyond modeling the correlations between individual steps,

fe ∼ GP(0, kγe) captures a higher level cluster structures within the collected episodes, i.e., the
similarity between episodes. Formally, the episode-level covariance between any pair of time steps in
episode i and j is given by kγe(e(i), e(j)). Finally, our deep additive GP model can be expressed as:
f = αtft + αefe, where αt and αe are the component weights. Given a set of collected episodes
represented by T ∈ RN×T×(ds+da), f ∈ RNT is given by: f |X ∼ N (0, k = α2

tkγt +α2
ekγe), where

X ∈ RNT×(ds+da) is the flattened matrix of T.

Prediction Model. To ensure explanability, we use a linear regression as the base of our prediction
model, where the regression coefficients reflect the importance of each input entity. Specifically,
we first convert the flattened response f back to the matrix form F ∈ RN×T , where the i-th row
F(i) ∈ RT is the i-th episode’s encoding given by our GP model. Then, we define the conditional
likelihood for the discrete and continuous final reward, respectively. When yi is continuous, we follow
the typical GP regression model [63] and define the yi = F(i)wT + ε1, where w ∈ R1×T is the
mixing weight and ε1 ∼ N (0, σ2) is the observation noise. The conditional likelihood distribution is
yi|F(i) ∼ N (F(i)wT , σ2). For the discrete final reward with a finite number of possible values, we
use the softmax prediction model to perform classification. Formally, we define yi|F(i) follows a

categorical distribution with p(yi = k|F(i)) = exp((F(i)WT )k)∑
k exp((F(i)WT )k)

. W ∈ RK×T is the mixing weight,
where K is the total number of classes. Finally, we combine all the components together and write
our explanation model as (A illustration of our proposed model can be found in Fig. 1.): 4

f |X ∼ N (0, k = α2
tkγt + α2

ekγe), yi|F(i) ∼

{
Cal(softmax(F(i)WT )), If conducting classification
N (F(i)wT , σ2), otherwise

,

(1)
where the mixing weight is constant. This indicates the time step importance derived from the mixing
weight is a global explanation. 5 According to the insight that time steps with a high correlation
tend to have a joint effect (similar importance) on the game result, we could combine the global
explanation with the time step correlations in Kt(X,X) to gain a fine-grained understanding of each
game. Specifically, given an episode and the top important steps indicated by the mixing weight, we
can identify the time steps that are highly correlated to these globally important steps and treat them
together as the local explanation of that episode. Supplement S1 introduces another way of deriving
episode-specific explanations by replacing the constant mixing weight with a weight obtained by a
simple DNN. Note that the episode correlations in Ke(X,X) reveal the cluster structure within a set
of episodes, which helps categorize the explanations of similar episodes.

3.3 Posterior Inference and Parameter Learning

Sparse GP with Inducing Points. Direct inference of our model requires computing (KXX+σ2I)−1

over KXX , which incurs O(NT 3) computational complexity. This cubic complexity restricts our
model to only small datasets. To improve scalability, we adopt the inducing points method [91] for
inference and learning. At a high level, this method simplifies the posterior computation by reducing
the effective number of samples in X from NT to M , where M is the number of inducing points.
Specifically, we define each inducing point at the latent space as zi ∈ R2q, and ui as the GP output

4Note that our model is similar to existing GP-based state-space models [4, 71, 29, 81, 26] in that both use
an RNN inside the kernel function. However, these models do not integrate an additive GP. More importantly,
their prediction models are not designed for explanation purposes and thus cannot derive time step importance.

5The classification model gives K global explanations, one for each class derived from each row of W.
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of zi. Then, the joint prior of f and u and the conditional prior f |u are given by:

f ,u|X,Z ∼ N
([

0
0

]
,

[
KXX KXZ

KT
XZ KZZ

])
, f |u,X,Z ∼ N (KXZK

−1
ZZu,KXX −KXZK

−1
ZZK

T
XZ) , (2)

where KXX , KXZ , KZZ are the covariance matrices. They can be computed by applying our
additive kernel function to the time-step and episode embedding of the training episodes and inducing
points. As is shown in Eqn (2), with inducing points, we only need to compute the inverse of KZZ ,
which significantly reduces the computational cost from O(NT 3) to O(m3).

Variational Inference and Learning. So far, our model has introduced the following parame-
ters: neural encoder parameters Θn = {φ, φ1}, GP parameters Θk = {γt, γe, αe, αt}, prediction
model parameters Θp = {w/W, σ2}, and inducing points Z = {zi}i=1:M . To learn these pa-
rameters, we follow the idea of empirical Bayes [63] and maximize the log marginal likelihood
log p(y|X,Z,Θn,Θk,Θp). Maximizing this log marginal likelihood is computationally expensive
and, more important, intractable for models with non-Gaussian likelihood. To provide factorized
approximation to marginal likelihood and enable efficient learning, we assume a variational posterior
over the inducing variable q(u) ∼ N (µ,Σ) and a factorized joint posterior q(f ,u) = q(u)p(f |u),
where p(f |u) is the conditional prior in Eqn. (2). By Jensen’s inequality, we can derive the evidence
lower bound (ELBO):

log p(y|X,Z,Θn,Θk,Θp) ≥ Eq(f)[log p(y|f)]− KL[q(u)||p(u)] , (3)

where the first part is the likelihood term. The second KL term penalizes the difference between the
approximated posterior q(u) and the prior p(u). Maximizing the ELBO in Eqn. (3) will automatically
maximize the marginal likelihood, which is also equivalent to minimizing the KL divergence from
the variational joint posterior to the true posterior (See Supplement S1 for more details).

When conducting classification, the categorical likelihood makes the likelihood term in Eqn. (3)
intractable. To tackle this challenge, we first compute the marginal variational posterior distribution
of f , denoted as q(f) = N (µf ,Σf ) (See Supplement S1 for detailed computations). Then, we
apply the reparameterization trick [57] to q(f). Formally, we define f = v(εf ) = µf + Lf εf , with
εf ∼ N (0, I) and LfL

T
f = Σf . With this reparameterization, we can sample from the standard

Gaussian distribution and approximate the likelihood term with Monte Carlo (MC) method [83]:

Eq(f)[log p(y|f)] = Ep(εf )[log p(y|v(εf ))] ≈ 1

B

∑
b

∑
i

log p(yi|(F(i))(b)) , (4)

where B is the number of MC samples. For the regression model, we directly compute the analyt-
ical form of likelihood term and use it for parameter learning (See derivation in Supplement S1).
With the above approximations, our model parameters (i.e., Θn, Θk, Θp, Z, and {µ,Σ}) can be
efficiently learned by maximizing the (approximated) ELBO using a stochastic gradient descent
method. Implementation details and hyper-parameter choices can be found in Supplement S2.

4 Evaluation

In this section, we evaluate EDGE on three representative RL games (all with delayed rewards) –
Pong in Atari, You-Shall-Not-Pass in MuJoCo, and Kick-And-Defend in MuJoCo. Supplement S5
further demonstrates the effectiveness of our method on two OpenAI GYM games (both with instant
rewards). For each game, we used a well-trained agent as our target agent (See Supplement S2 for
more details about these agents).

Baseline Selection. Recall our goal is to take as input the episode of a target agent and identify the
steps critical for the agent’s final reward. As is discussed in Section 3.1, to do this, there are two
categories of alternative approaches – ¶ fitting an episode through a non-interpretable model and
then deriving explanation from that model and · fitting an episode through a self-explainable model
and then obtaining interpretation directly from its interpretation component. In this section, we select
some representative alternative methods as our baseline and compare them with our proposed method.
Below, we briefly describe these baseline approaches and discuss the rationale behind our choice.

With respect to the first type of alternative approaches, we first utilize the RNN structure proposed
in [43] to fit the reward prediction model. Then, we apply various gradient-based saliency methods on
the RNN model and thus derive interpretation accordingly. We implement three widely used saliency
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Figure 2: Mean and standard error of the fidelity scores obtained by each explanation method. The
x-axis represents the different choices of K. “RatNet” stands for Rationale Net. For our method, we
use the global explanations derived from the mixing weight in this evaluation.

methods – Vanilla gradient [76], integrated gradient [80], and SmoothGrad [77] – as well as their
variants (ExpGrad [79], VarGrad [40], and integrated gradient with uniform baseline [79]).6 When
comparing RNN+saliency method with our proposed approach, we choose the RNN’s interpretation
from the saliency method with the best explanation fidelity. For the fidelity comparison between
each saliency method, the readers could refer to Supplement S3. In addition to the RNN+saliency
method, another method falling into the first kind of alternative approaches is Rudder [7]. Technically
speaking, this method also learns an RNN model to predict an agent’s final reward. Differently, it
derives explanation from decomposed final reward.

Regarding the second kind of alternative approaches, we choose Attention RNN and Rationale Net.
Attention RNN [10] is typically treated as a self-interpretable model. From the model’s attention
layer, one could extract its output and use it as the important scores for the input dimensions. We use
these important scores to pinpoint the critical time steps in the input episode. Similar to Attention
RNN, Rationale Net is also self-interpretable. In our experiments we use Rationale Net’s original
model structure [51] rather than the improved model structure proposed in [17]. This is because,
going beyond training data, the improved model training requires additional information, which is
unavailable for our problem.

Evaluation Metric. An intuitive method to evaluate the fidelity of the various approaches’ explana-
tions is to vary the actions at the time steps critical for the final reward and then measure the reward
difference before and after the action manipulation. However, this method invalidates the physical
realistic property of an episode because the change of an agent’s action at a specific time step would
inevitably influence its consecutive actions and the state transitions. To address this problem, we
introduce a physically realistic method to manipulate episodes. Then, we introduce a new metric to
quantify the fidelity of interpretation.

Given the explanation of the i-th episode – Ei, we first identify the top-K important time steps from
Ei. From the top-K time steps, we then extract the longest sequence (i.e., the longest continuous
time steps), record its length – l, and treat its elements as the time steps most critical to yi.

To evaluate and compare the fidelity of the interpretation (i.e., the most critical time steps extracted
through different interpretation methods), we first replay the actions recorded on that episode to the
time step indicated by the longest sequence. Starting from the beginning of the longest continuous
time steps to its end (i.e., ti · · · ti+l), we replace the corresponding actions at these time steps with
random actions. 7 Following the action replacement, we pass the state at ti+l+1 to the agent’s policy.
Starting from ti+l+1, we then use the agent’s policy to complete the game, gather the final reward,
and compute the final reward difference before/after replaying denoted as d. After computing l and d,
we define the fidelity score of Ei as log(pl)− log(pd). Here, pl = l/T is the length of the longest
sequence normalized by the total length of the episode - T . pd = |d|/dmax is the absolute reward
difference normalized by the maximum absolute reward difference of the game. When the value of
the fidelity score log(pl)− log(pd) is low, it indicates Ei is illustrated by a short length of sequence.
By varying the actions pertaining to this short sequence, we can observe a great change in the agent’s
final reward. As such, a low score implies high fidelity of an interpretation method.

Result. Fig. 2 shows the comparison results of EDGE against the aforementioned alternative explana-
tion approaches. First, we observe that existing self-explainable methods (i.e., Attention and Rational

6Note that we select these saliency methods because they pass the sanity check [1, 2]. Besides, it should be
noted that we do not consider the perturbation-based methods to derive interpretation from RNN because these
methods are mainly designed to explain convolutional networks trained for image recognition tasks.

7If the policy network is an RNN, we also fit the observation at time ti · · · ti+l into the policy to ensure the
RNN policy’s memory is not truncated.
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(b) Time step importance of the target regular agent in the You-Shall-Not-Pass game.

Figure 3: Illustrations of the critical time steps extracted by EDGE in a winning/losing episode.

Table 1: The target agent’s performance in different use cases. “MuJoCo-Y” represents the You-
Shall-Not-Pass game and “MuJoCo-K” stands for the Kick-And-Defend game. To demonstrate the
statistical significance of our results, we run all the experiments three times with different random
seeds and show the mean and standard error of results on each setup. Numbers before the brackets
are means and those in the brackets are standard deviations. Supplementary S6 further shows a
hypothesis test result.

Applications Games Rudder Saliency Attention RatNet EDGE

Target agent win rate
changes before/after attacks

Pong -19.93 (4.43) -30.33 (0.47) -25.27(1.79) -29.20 (4.24) -65.47 (2.90)
MuJoCo-Y -32.53 (4.72) -29.33 (3.68) -33.93 (5.77) -30.00 (1.63) -35.13 (2.29)
MuJoCo-K -21.80 (3.70) -37.87 (6.31) -41.20 (4.70) -7.13 (2.50) -43.47 (4.01)

Target agent win rate
changes before/after patching

Pong +1.89 (1.25) -1.13 (0.96) -0.58 (1.81) -3.66 (1.35) +2.75 (0.65)
MuJoCo-Y +1.76 (0.17) +0.92 (0.32) +0.44 (0.06) +1.68 (0.50) +2.91 (0.32)
MuJoCo-K +0.96 (0.1) +1.17 (0.17) +0.57 (0.04) +1.21 (0.16) +1.21 (0.13)

Victim agent win rate changes
before/after robustifying MuJoCo-Y +8.54 (0.75) +12.69 (1.46) +25.10 (1.44) +25.42 (1.32) +35.30 (3.02)

Net) cannot consistently outperform the post-training explanation approaches (i.e., saliency methods
and Rudder). This observation aligns with our discussion in Section 3.1. Second, we discover that
our method demonstrates the highest interpretation fidelity across all the games in all settings. As we
discuss in Section 3.2, it is because our method could capture not only the inter-relationship between
time steps but, more importantly, the joint effect across episodes.

In addition to the fidelity of our interpretation, we also evaluate the stability of our explanation
and measure the explainability of each approach with regard to the underlying model. We present
the experiment results in Supplement S3, demonstrating the superiority of our method in those
dimensions. Along with this comparison, we further describe how well our method could fit given
episodes, discuss the efficiency of our proposed approach, and test its sensitivity against the choice of
hyper-parameters. Due to the page limit, we also detail these experiments and present experimental
results in Supplement S3.

5 Use Cases of Interpretation

Understanding Agent Behavior. Fig. 3 showcases some episode snapshots of the target agent in the
Pong and You-Shall-Not-Pass game together with the time-step importance extracted by our method.
As we can first observe from Fig. 3(a), in the winning (left) episode, EDGE highlights the time steps
when the agent hits the ball as the key steps leading to a win. This explanation implies that our target
agent wins because it sends a difficult ball bouncing over the sideline and sailing to the corner where
the opponent can barely reach. Oppositely, our method identifies the last few steps that the target
agent misses the ball as the critical step in the losing episode. This indicates that the agent loses
because it gets caught out of position. Similarly, our method also pinpoints the critical time steps
matching human perceptions in the You-Shall-Not-Pass games. For example, in the left episode of
Fig. 3(b), our explanations state that the runner (red agent) wins because it escapes from the blocker
and crosses the finish line. Overall, Fig. 3 demonstrates that the critical steps extracted by EDGE
can help humans understand how an agent wins/loses a game. In Supplement S4, we show more
examples of critical time steps and the correlations we extracted from the three games. Supplement
S7 further shows user study to demonstrate that our explanation could help user understand agent
behaviors and thus perform policy forensics.
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Figure 4: Time step importance of the victim agent in the You-Shall-Not-Pass game. By comparing
this figure with Fig. 3(b), we can observe that our method could derive different explanations for
different policies in the same game, indicating explanation is policy dependent.

Launching Adversarial Attacks. The qualitative analysis above reveals that an agent usually wins
because of its correct moves at the crucial steps. With this finding, we now discuss how to launch
adversarial attacks under the guidance of the interpretation. Previous research [41, 93] has proposed
various attacks to fail a DRL agent by adding adversarial perturbation to its observations at each time
step. We demonstrate that with the help of the explanations, an attacker could defeat an agent by
varying actions at only a few critical steps rather than adding physically unrealistic perturbations.
Our key idea is intuitive. If an agent’s win mainly relies on its actions at a few crucial steps, then
the agent could easily lose if it takes sub-optimal actions at those steps. Guided by this intuition, we
propose an explanation-based attack that varies the agent’s action at the critical steps identified by an
explanation method. To test this attack’s effectiveness, we first collect 2000 episodes where the target
agent wins and explain these episodes with EDGE and the baseline approaches. Second, we conclude
the top-K commonly critical steps across all the episodes (Here, we set K=30). Finally, we run the
agent in the environment and force it to take a random action at the common important steps. We test
the agent for 500 rounds and record the changes in its winning rate before/after attacks in Table 1.
As we can observe from the 2∼4 row of Table 1, all the explanation models can generate effective
attacks that reduce the agent’s winning rate. Benefiting from the high explanation fidelity, the attack
obtained from our explanations demonstrates the strongest exploitability. Supplement S4 shows the
results of different choices of K and discusses the potential alternatives of our attack. Note that this
attack is different from the fidelity test in Section 4 in that our attack generalizes the summarized
time step importance to unseen episodes while the fidelity test replays the explained episodes.

Patching Policy Errors. We design an explanation-guided policy patch method. The key idea is to
explore a remediation policy by conducting explorations at the critical time steps of losing games and
use the mixture of the original policy and the remediation policy as the patched policy. Specifically,
we first collected a set of losing episodes of the target agent and identified the important time steps
with EDGE and the baseline approaches above. Then, we explore the remediation policy by replay
those episodes with different actions at the critical steps. Here, since we do not assume an oracle
knowing the correct actions to take, we perform random explorations. First, we set an exploration
budget of 10, representing replaying 10 times for each losing episode. In each replaying, we take a
random action at the top 5 consecutive critical steps and record the random actions and corresponding
states leading to a win. Finally, we form a look-up table with these collected state-action pairs and
use it as the remediation policy. When running in the environment, the target agent will act based on
the table if the current state is in the table. 8 Otherwise, the agent will take the actions given by its
original policy. To test the effectiveness of our method, we run 500 games and record the changes in
the target agent’s winning rate before and after patching. As is shown in row 5∼7 of Table 1, overall,
the patched policies enhance the target agent’s performance, and EDGE demonstrates the highest
winning rate improvement. Table 1 also shows that in some cases, the patched policy introduces too
many false positive that even reduce the winning rate. In Supplement S4, we discuss how to mitigate
this problem via a probabilistic mixture of the remediation policy and the original policy. Supplement
S4 also experiments the influence of the look-up table size on the patching performance and discusses
other alternatives to our patching method.

Robustifying Victim Policies. Finally, we apply our methods to explain the episodes of a victim
agent playing against an adversarial opponent in the You-Shall-Not-Pass game. The adversarial policy
is obtained by the attack proposed in [31]. Fig. 4 demonstrates the identified important steps. First, the
losing episode in Fig. 4 shows the blocker takes a sequence of adversarial behaviors (i.e., intentionally
falling on the ground). These malicious actions trick the runner into falling and thus losing the game.

8For games with a continuous state space, we compute the l1 norm difference of the current state st and the
states si in the table. If the state difference is lower than a small threshold (1e-4 in our experiment. We tested
1e-3, 1e-4, and 1e-5 and observed similar results.), we treat st and si as the same state. Since the games of the
same agent usually start from relatively similar states and transition following the same policy, it is possible to
observe similar states in different episodes.
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Oppositely, the similar adversarial actions in the winning episode cannot trigger the runner to behave
abnormally. The explanations reveal that the different focus of the victim causes the different victim
actions. In the winning episode, the victim agent focuses less on the steps pertaining to adversarial
actions, whereas those steps carry the highest weights in the losing episode. This finding implies
that the victim agent may be less distracted by the adversarial actions if it does not observe them.
Guided by this hypothesis, we propose to robustify the victim agent by blinding its observation on the
adversary at the critical time steps in the losing episode (i.e., the time steps pertaining to adversarial
actions). We test the partially blind victim and record the changes in its winning rate before/after
blinding. As is shown in the last row of Table 1, blinding the victim based on our explanations
significantly improves its winning rate. Table 1 also demonstrates the effectiveness of the baseline
approaches in robustifying victim policies. Overall, we demonstrate that the explanations of a victim
policy could pinpoint the root cause of its loss and help develop the defense mechanism.

6 Discussion

Scalability. As is discussed in Section 3.3, by using inducing points and variational inference, our
model parameters can be efficiently solved by stochastic gradient descents. Supplement S3&S5
show that EDGE imposes only a small training overhead over the existing methods. We can further
accelerate the training of EDGE by leveraging more advanced matrix computation methods, such as
approximating the covariance matrix with kernel structure interpolation [90] or replacing Cholesky
decomposition with Contour Integral Quadrature when computing the K−1

ZZ [67].

Other games. Besides the two-party Markov games (i.e., Atari Pong and MuJoCo) studied in this
work, many other games also have delayed rewards – mainly multi-player Markov games (e.g., some
zero-sum real-time strategy games [88]) and extensive-form games (e.g., Go [74] and chess [75]).
Regarding the multi-player Markov games, the associations between the episodes and final rewards
will also be more sophisticated, requiring a model with a high capacity to fit the prediction. As part
of future work, we will investigate how to increase the capacity of our proposed model for those
games, such as adding more GP components or using a more complicated DNN as the mixing weight.
For the extensive-form games, only one agent can observe the game state at any given time step and
thus take action. As such, these games have a different form of episodes from the Markov games. In
the future, we will explore how to extend our model to fit and explain the episodes collected from
extensive-form games. Supplement S5 demonstrates our method’s explanation fidelity on two games
with instant rewards. Future work will evaluate the effectiveness of our attack and patching methods
on those games and generalize our method to more sophisticated games with instant rewards.

Limitations and Future Works. Our work has a few limitations. First, we mainly compare EDGE
with some existing techniques that have been used to explain sequential data. It is possible that with
some adaptions, other explanation methods can also be applied to sequential data. It is also possible
that existing methods can be extended to capture the correlations between episodes. As part of future
work, we will explore these possibilities and broader solutions to explain a DRL policy. Second, the
fidelity evaluation method introduced in Section 4 could be further improved, such as identifying
multiple continuous important sequences. Our future work will investigate more rigorous fidelity
testing methods and metrics. Third, our current learning strategy provides the point estimate of the
mixing weight (explanations). In future work, we will explore how to place a prior on the model
parameters and apply Bayesian inference (e.g., MCMC [6]) to output the explanation uncertainty.
Finally, our work also suggests that it may be possible to train a Transformer on MDP episodes to
analyze offline trajectory data [19], and then add a GP on top to perform ablation studies. As part of
future works, we will explore along this direction.

7 Conclusion

This paper introduces EDGE to derive strategy-level explanations for a DRL policy. Technically, it
treats the target DRL agent as a blackbox and approximates its decision-making process through
our proposed self-explainable model. By evaluating it on three games commonly utilized for DRL
evaluation, we show that EDGE produces high-fidelity explanations. More importantly, we demonstrate
how DRL policy users and developers could benefit from EDGE to understand policy behavior better,
pinpoint policy weaknesses, and even conduct automated patches to enhance the original DRL policy.

10



Acknowledgments

We would like to thank the anonymous reviewers and meta reviewer for their helpful comments.
This project was supported in part by NSF grant CNS-2045948 and CNS-2055320, by ONR grant
N00014-20-1-2008, by the Amazon Research Award, and by the IBM Ph.D. Fellowship Award.

References
[1] J. Adebayo, J. Gilmer, M. Muelly, I. Goodfellow, M. Hardt, and B. Kim. Sanity checks for

saliency maps. In Proc. of NeurIPS, 2018.

[2] J. Adebayo, M. Muelly, I. Liccardi, and B. Kim. Debugging tests for model explanations. In
Proc. of NeurIPS, 2018.

[3] C. C. Aggarwal, A. Hinneburg, and D. A. Keim. On the surprising behavior of distance metrics
in high dimensional space. In Proc. of ICDT, 2001.

[4] M. Al-Shedivat, A. G. Wilson, Y. Saatchi, Z. Hu, and E. P. Xing. Learning scalable deep kernels
with recurrent structure. The Journal of Machine Learning Research (JMLR), 2017.

[5] D. Alvarez-Melis and T. S. Jaakkola. Towards robust interpretability with self-explaining neural
networks. In Proc. of NeurIPS, 2018.

[6] C. Andrieu, N. De Freitas, A. Doucet, and M. I. Jordan. An introduction to mcmc for machine
learning. Machine learning, 2003.

[7] J. A. Arjona-Medina, M. Gillhofer, M. Widrich, T. Unterthiner, J. Brandstetter, and S. Hochreiter.
Rudder: Return decomposition for delayed rewards. In Proc. of NeurIPS, 2019.

[8] ATARI. Atari games. https://www.atari.com/, 2006.

[9] A. Atrey, K. Clary, and D. Jensen. Exploratory not explanatory: Counterfactual analysis of
saliency maps for deep reinforcement learning. In Proc. of ICLR, 2020.

[10] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align
and translate. In Proc. of ICLR, 2015.

[11] D. Balaban. How ai is mishandled to become a cybersecurity risk. https://www.eweek.co
m/security/how-ai-is-mishandled-to-become-a-cybersecurity-risk/, 2021.

[12] C. Bass, M. da Silva, C. Sudre, P.-D. Tudosiu, S. Smith, and E. Robinson. Icam: Interpretable
classification via disentangled representations and feature attribution mapping. In Proc. of
NeurIPS, 2020.

[13] O. Bastani, Y. Pu, and A. Solar-Lezama. Verifiable reinforcement learning via policy extraction.
In Proc. of ICML, 2018.

[14] T. Bewley and J. Lawry. Tripletree: A versatile interpretable representation of black box agents
and their environments. In Proc. of AAAI, 2021.

[15] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[16] O.-M. Camburu, T. Rocktäschel, T. Lukasiewicz, and P. Blunsom. e-snli: Natural language
inference with natural language explanations. In Proc. of NeurIPS, 2018.

[17] S. Chang, Y. Zhang, M. Yu, and T. Jaakkola. Invariant rationalization. In Proc. of ICML, 2020.

[18] C. Chen, O. Li, C. Tao, A. J. Barnett, J. Su, and C. Rudin. This looks like that: deep learning
for interpretable image recognition. In Proc. of NeurIPS, 2019.

[19] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel, A. Srinivas, and
I. Mordatch. Decision transformer: Reinforcement learning via sequence modeling. arXiv
preprint arXiv:2106.01345, 2021.

11

https://www.atari.com/
https://www.eweek.com/security/how-ai-is-mishandled-to-become-a-cybersecurity-risk/
https://www.eweek.com/security/how-ai-is-mishandled-to-become-a-cybersecurity-risk/


[20] X. Chen, Z. Wang, Y. Fan, B. Jin, P. Mardziel, C. Joe-Wong, and A. Datta. Towards behavior-
level explanation for deep reinforcement learning. arXiv preprint arXiv:2009.08507, 2020.

[21] L. Chu, X. Hu, J. Hu, L. Wang, and J. Pei. Exact and consistent interpretation for piecewise
linear neural networks: A closed form solution. In Proc. of KDD, 2018.

[22] Y. Coppens, K. Efthymiadis, T. Lenaerts, A. Nowé, T. Miller, R. Weber, and D. Magazzeni.
Distilling deep reinforcement learning policies in soft decision trees. In Proc. of IJCAI Workshop
on XAI, 2019.

[23] M. H. Danesh, A. Koul, A. Fern, and S. Khorram. Re-understanding finite-state representations
of recurrent policy networks. In Proc. of ICML, 2021.

[24] DeepMind. Alphastar: Mastering the real-time strategy game starcraft ii. https://en.wikip
edia.org/wiki/AlphaStar_(software), 2017.

[25] D. Duvenaud, H. Nickisch, and C. E. Rasmussen. Additive gaussian processes. arXiv preprint
arXiv:1112.4394, 2011.

[26] S. Eleftheriadis, T. Nicholson, M. P. Deisenroth, and J. Hensman. Identification of gaussian
process state space models. In Proc. of NeurIPS, 2017.

[27] G. F. Elsayed, Q. V. Le, and S. Kornblith. Saccader: Accurate, interpretable image classification
with hard attention. In Proc. of NeurIPS, 2019.

[28] R. C. Fong and A. Vedaldi. Interpretable explanations of black boxes by meaningful perturbation.
In Proc. of ICCV, 2017.

[29] R. Frigola, Y. Chen, and C. E. Rasmussen. Variational gaussian process state-space models. In
Proc. of NeurIPS, 2014.

[30] A. Ghorbani, A. Abid, and J. Zou. Interpretation of neural networks is fragile. In Proc. of AAAI,
2019.

[31] A. Gleave, M. Dennis, N. Kant, C. Wild, S. Levine, and S. Russell. Adversarial policies:
Attacking deep reinforcement learning. In Proc. of ICLR, 2020.

[32] S. Greydanus, A. Koul, J. Dodge, and A. Fern. Visualizing and understanding atari agents. In
Proc. of ICML, 2018.

[33] S. Gu, E. Holly, T. Lillicrap, and S. Levine. Deep reinforcement learning for robotic manipula-
tion with asynchronous off-policy updates. In Proc. of ICRA, 2017.

[34] T. Guo, T. Lin, and N. Antulov-Fantulin. Exploring interpretable lstm neural networks over
multi-variable data. In Proc. of ICML, 2019.

[35] W. Guo, S. Huang, Y. Tao, X. Xing, and L. Lin. Explaining deep learning models-a bayesian
non-parametric approach. Proc. of NeurIPS, 2018.

[36] W. Guo, D. Mu, J. Xu, P. Su, G. Wang, and X. Xing. Lemna: Explaining deep learning based
security applications. In Proc. of CCS, 2018.

[37] W. Guo, X. Wu, S. Huang, and X. Xing. Adversarial policy learning in two-player competitive
games. In Proc. of ICML, 2021.

[38] T. Haarnoja, V. Pong, A. Zhou, M. Dalal, P. Abbeel, and S. Levine. Composable deep reinforce-
ment learning for robotic manipulation. In Proc. of ICRA, 2018.

[39] J. Heo, H. B. Lee, S. Kim, J. Lee, K. J. Kim, E. Yang, and S. J. Hwang. Uncertainty-aware
attention for reliable interpretation and prediction. In Proc. of NeurIPS, 2018.

[40] S. Hooker, D. Erhan, P.-J. Kindermans, and B. Kim. A benchmark for interpretability methods
in deep neural networks. In Proc. of NeurIPS, 2019.

[41] S. Huang, N. Papernot, I. Goodfellow, Y. Duan, and P. Abbeel. Adversarial attacks on neural
network policies. In Proc. of ICLR workshop, 2017.

12

https://en.wikipedia.org/wiki/AlphaStar_(software)
https://en.wikipedia.org/wiki/AlphaStar_(software)


[42] A. Hüyük, D. Jarrett, C. Tekin, and M. Van Der Schaar. Explaining by imitating: Understanding
decisions by interpretable policy learning. In Proc. of ICLR, 2021.

[43] A. A. Ismail, M. Gunady, L. Pessoa, H. C. Bravo, and S. Feizi. Input-cell attention reduces
vanishing saliency of recurrent neural networks. In Proc. of NeurIPS, 2019.

[44] R. Iyer, Y. Li, H. Li, M. Lewis, R. Sundar, and K. Sycara. Transparency and explanation in deep
reinforcement learning neural networks. In Proc. of AIES, 2018.

[45] S. Jain and B. C. Wallace. Attention is not explanation. In Proc. of NAACL, 2019.

[46] Z. Juozapaitis, A. Koul, A. Fern, M. Erwig, and F. Doshi-Velez. Explainable reinforcement
learning via reward decomposition. In Proc. of IJCAI Workshop on XAI, 2019.

[47] O. Katz. Explainability: The next frontier for artificial intelligence in insurance and banking.
https://www.unite.ai/explainability-the-next-frontier-for-artificial-i
ntelligence-in-insurance-and-banking/, 2021.

[48] V. R. Konda and J. N. Tsitsiklis. Actor-critic algorithms. In Proc. of NeurIPS, 2000.

[49] A. Koul, S. Greydanus, and A. Fern. Learning finite state representations of recurrent policy
networks. arXiv preprint arXiv:1811.12530, 2018.

[50] G.-H. Lee, W. Jin, D. Alvarez-Melis, and T. Jaakkola. Functional transparency for structured
data: a game-theoretic approach. In Proc. of ICML, 2019.

[51] T. Lei, R. Barzilay, and T. Jaakkola. Rationalizing neural predictions. In Proc. of EMNLP-
IJCNLP, 2017.

[52] O. Li, H. Liu, C. Chen, and C. Rudin. Deep learning for case-based reasoning through prototypes:
A neural network that explains its predictions. In Proc. of AAAI, 2018.

[53] J. Liang, Y. Wu, D. Xu, and V. Honavar. Longitudinal deep kernel gaussian process regression.
In Proc. of AAAI, 2021.

[54] Z. Lin, K.-H. Lam, and A. Fern. Contrastive explanations for reinforcement learning via
embedded self predictions. In Proc. of ICLR, 2021.

[55] G. Liu, O. Schulte, W. Zhu, and Q. Li. Toward interpretable deep reinforcement learning with
linear model u-trees. In Proc. of ECML-PKDD, 2018.

[56] Y. Y. Lu, W. Guo, X. Xing, and W. S. Noble. Dance: Enhancing saliency maps using decoys. In
Proc. of ICML, 2021.

[57] C. J. Maddison, A. Mnih, and Y. W. Teh. The concrete distribution: A continuous relaxation of
discrete random variables. In Proc. of ICLR, 2017.

[58] P. Madumal, T. Miller, L. Sonenberg, and F. Vetere. Distal explanations for model-free
explainable reinforcement learning. arXiv preprint arXiv:2001.10284, 2020.

[59] P. Madumal, T. Miller, L. Sonenberg, and F. Vetere. Explainable reinforcement learning through
a causal lens. In Proc. of AAAI, 2020.

[60] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep rein-
forcement learning. Nature, 2015.

[61] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard. Universal adversarial perturba-
tions. In Proc. of CVPR, 2017.

[62] A. Mott, D. Zoran, M. Chrzanowski, D. Wierstra, and D. J. Rezende. Towards interpretable
reinforcement learning using attention augmented agents. In Proc. of NeurIPS, 2019.

[63] K. P. Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

13

https://www.unite.ai/explainability-the-next-frontier-for-artificial-intelligence-in-insurance-and-banking/
https://www.unite.ai/explainability-the-next-frontier-for-artificial-intelligence-in-insurance-and-banking/


[64] W. Nie, Y. Zhang, and A. Patel. A theoretical explanation for perplexing behaviors of
backpropagation-based visualizations. In Proc. of ICML, 2018.

[65] OpenAI. Openai at the international 2017. https://openai.com/the-international/,
2017.

[66] T. Pedapati, A. Balakrishnan, K. Shanmugam, and A. Dhurandhar. Learning global transparent
models consistent with local contrastive explanations. In Proc. of NeurIPS, 2020.

[67] G. Pleiss, M. Jankowiak, D. Eriksson, A. Damle, and J. R. Gardner. Fast matrix square roots
with applications to gaussian processes and bayesian optimization. In Proc. of NeurIPS, 2020.

[68] N. Puri, S. Verma, P. Gupta, D. Kayastha, S. Deshmukh, B. Krishnamurthy, and S. Singh.
Explain your move: Understanding agent actions using specific and relevant feature attribution.
In Proc. of ICLR, 2020.

[69] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy optimization.
In Proc. of ICML, 2015.

[70] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[71] Q. She and A. Wu. Neural dynamics discovery via gaussian process recurrent neural networks.
In Proc. of UAI, 2020.

[72] W. Shi, S. Song, Z. Wang, and G. Huang. Self-supervised discovering of causal features:
Towards interpretable reinforcement learning. arXiv preprint arXiv:2003.07069, 2020.

[73] T. Shu, C. Xiong, and R. Socher. Hierarchical and interpretable skill acquisition in multi-task
reinforcement learning. arXiv preprint arXiv:1712.07294, 2017.

[74] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the game of go with deep neural
networks and tree search. Nature, 2016.

[75] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre,
D. Kumaran, T. Graepel, et al. Mastering chess and shogi by self-play with a general reinforce-
ment learning algorithm. arXiv preprint arXiv:1712.01815, 2017.

[76] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional networks: Visualising
image classification models and saliency maps. arXiv:1312.6034, 2013.

[77] D. Smilkov, N. Thorat, B. Kim, F. Viégas, and M. Wattenberg. Smoothgrad: removing noise by
adding noise. arXiv:1706.03825, 2017.

[78] S. Srinivas and F. Fleuret. Rethinking the role of gradient-based attribution methods for model
interpretability. In Proc. of ICLR, 2021.

[79] P. Sturmfels, S. Lundberg, and S.-I. Lee. Visualizing the impact of feature attribution baselines.
Distill, 2020.

[80] M. Sundararajan, A. Taly, and Q. Yan. Axiomatic attribution for deep networks. In Proc. of
ICML, 2017.

[81] A. Svensson, A. Solin, S. Särkkä, and T. Schön. Computationally efficient bayesian learning of
gaussian process state space models. In Proc. of AISTATS, 2016.

[82] Y. Tang, D. Nguyen, and D. Ha. Neuroevolution of self-interpretable agents. In Proc. of
GECCO, 2020.

[83] S. Thrun. Monte carlo pomdps. In Proc. of NeurIPS, 2000.

[84] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In Proc.
of ICIRS, 2012.

14

https://openai.com/the-international/


[85] N. Topin and M. Veloso. Generation of policy-level explanations for reinforcement learning. In
Proc. of AAAI, 2019.

[86] H. Van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double q-learning.
In Proc. of AAAI, 2016.

[87] A. Verma, V. Murali, R. Singh, P. Kohli, and S. Chaudhuri. Programmatically interpretable
reinforcement learning. In Proc. of ICML, 2018.

[88] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi,
R. Powell, T. Ewalds, P. Georgiev, et al. Grandmaster level in starcraft ii using multi-agent
reinforcement learning. Nature, 2019.

[89] S. Wiegreffe and Y. Pinter. Attention is not not explanation. In Proc. of EMNLP-IJCNLP, 2019.

[90] A. Wilson and H. Nickisch. Kernel interpolation for scalable structured gaussian processes
(kiss-gp). In Proc. of ICML, 2015.

[91] A. G. Wilson, Z. Hu, R. Salakhutdinov, and E. P. Xing. Stochastic variational deep kernel
learning. In Proc. of NeurIPS, 2016.

[92] V. Zambaldi, D. Raposo, A. Santoro, V. Bapst, Y. Li, I. Babuschkin, K. Tuyls, D. Reichert,
T. Lillicrap, E. Lockhart, et al. Deep reinforcement learning with relational inductive biases. In
Proc. of ICLR, 2018.

[93] H. Zhang, H. Chen, D. Boning, and C.-J. Hsieh. Robust reinforcement learning on state
observations with learned optimal adversary. In Proc. of ICLR, 2021.

[94] X. Zhang, N. Wang, H. Shen, S. Ji, X. Luo, and T. Wang. Interpretable deep learning under fire.
In Proc. of USENIX Security, 2020.

15



EDGE: Explaining Deep Reinforcement Learning Policies

S1 Additional Technical Details

Evidence Lower Bound. In the following, we derive the evidence lower bound (ELBO) in the Eqn.
(3) of Section 3.3 and explain why maximizing it is equivalent to minimizing the KL divergence from
the variational joint distribution to the true posterior. Specifically, we start with the log marginal
likelihood log p(y|X,Z) and show how to derive ELBO from it

log p(y|X,Z) = log

∫ ∫
p(y, f ,u|X,Z)dudf

= log

∫ ∫
p(y|f ,X)p(f ,u|X,Z)dudf

= log

∫ ∫
p(y|f ,X)p(f ,u|X,Z)

q(f ,u)

q(f ,u)
dudf

= log

∫ ∫
p(y|f ,X)q(f ,u)

p(f ,u|X,Z)

q(f ,u)
dudf

= log Eq(f ,u)[p(y|f ,X)
p(f ,u|X,Z)

q(f ,u)
]

(a)

≥ Eq(f ,u)[log (p(y|f ,X)
p(f ,u|X,Z)

q(f ,u)
)]

≥ Eq(f ,u)[log p(y|f ,X) + log
p(f ,u|X,Z)

q(f ,u)
]

≥ Eq(f ,u)[log p(y|f ,X)]− Eq(f ,u)[log
q(f ,u)

p(f ,u|X,Z)
]

≥ Eq(f ,u)[log p(y|f)]− Eq(f ,u)[log
p(f |u)q(u)
p(f |u)p(u) ]

≥ Eq(f ,u)[log p(y|f)]−
∫

p(f |u)df
∫

[log
q(u)

p(u)
]q(u)du

≥ Eq(f)[log p(y|f)]−KL[q(u)||p(u)] ,

(1)

where we omit the parameters {Θn,Θk,Θp} and q(u) is the variational distribution. The (a) step is
according to the Jensen’s inequality. As we can observe from Eqn. (1), maximizing the ELBO will
automatically maximize the marginal likelihood. Below, we derive the ELBO from the KL divergence
from q(f ,u) to p(f ,u|y).

KL[q(f ,u)||p(f ,u|y)] =

∫ ∫
q(f ,u)log

q(f ,u)

p(f ,u|y)

=

∫ ∫
q(f ,u)log

q(f ,u)p(y)

p(y|f ,u)p(f ,u)
dudf

=

∫ ∫
q(f ,u)[log

1

p(y|f ,u)
+ log

q(f ,u)p(y)

p(f ,u)
+ log p(y)]dudf

= −
∫ ∫

q(f ,u)[log p(y|f ,u)− log
q(f ,u)p(y)

p(f ,u)
]dudf + log p(y)

= −ELBO + log p(y) .

(2)
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Since KL[q(f ,u)||p(f ,u|y)] ≥ 0, Eqn (2) shows that ELBO is a lower bound on the log marginal
likelihood log p(y). In addition, since log p(y) is independent from q(f ,u), maximizing the ELBO will
automatically minimize KL[q(f ,u)||p(f ,u|y)].

Marginal Variational Posterior with Whitening. In our model, we apply the “whitening”
operation proposed in [19]. Specifically, we first define u = Lv, where LLT = KZZ and p(v) =
N (0, I). Instead of directly defining q(u), here, we define a variational distribution for v, denoted as
q(v) = N (µv,S). Then, we can compute q(u) = N (Lµv, LSLT ). Recall that q(f ,u) = p(f |u)q(u) and
p(f |u) = N (KXZK

−1
ZZu,KXX −KXZK

−1
ZZK

T
XZ), we can compute q(f) as

q(f) =

∫
p(f |u)q(u)du = N (KXZK

−1/2
ZZ µv,KXX +KXZK

−1/2
ZZ (S− I)K

−1/2
ZZ KT

XZ) . (3)

Below, we denote µf = KXZK
−1/2
ZZ µv and Σf = KXX+KXZK

−1/2
ZZ (S−I)K

−1/2
ZZ KT

XZ . Note that, here
we use the true marginal variational posterior, in our implementation, we also enable the widely applied

SoR approximation [23], i.e., q(f |u) ≈ KXZK
−1/2
ZZ µv. With SoR, q(f) ≈ N (µf ,KXZK

−1/2
ZZ SK

−1/2
ZZ KT

XZ).
It should also be noted that, with whitening, the variational parameters change from {µ,Σ} to {µv,S}
and the KL divergence term in ELBO becomes KL[q(v)||p(v)].

Expected Conditional Log Likelihood in Regression Model. Recall that our regression model
has an analytical form of the likelihood term in the ELBO. Here, we derive this analytical from of the
expected conditional log likelihood. Specifically, we first rewrite our regression model as follows:

f |X ∼ N (0, k = α2
tkγt + α2

ekγe), yi|f (i) ∼ N (f (i)wT , σ2) . (4)

With the q(f) in Eqn. (3), we then compute the expected conditional log likelihood as

Eq(f)[log p(y|f)] = Eq(f)[log p(y|f)] = Eq(f)[
−N

2
[log σ2 + log 2π +

1

σ2
(y − FwT )T (y − FwT )]]

=
−N

2
[log σ2 + log 2π +

1

σ2
Eq(f)[(y − FwT )T (y − FwT )]] ,

(5)

where Eq(f)[(y − FwT )T (y − FwT )] can be computed as follows:

Eq(f)[(y − FwT )T (y − FwT )] = Eq(f)[yTy −wFTy − yTFwT + wFTFwT ]

= yTy −wνTf y − yT νfw
T + wEq(f)[FTF]wT

=
∑
i

(y2i − 2ν
(i)
f wT ) + wEq(f)[FTF]wT ,

(6)

where νf ∈ RN×T is the matrix form of µf . ν
(i)
f ∈ R1×T is the i-th row of νf , representing the mean of

the variational posterior of F(i). After computing the expectation of each element in FTF and combine
them together, we have

Eq(f)[FTF] =
∑
N

[Σ
(i)
f + (ν

(i)
f )T ν

(i)
f ] , (7)

where Σ
(i)
f ∈ RT×T is the covariance matrix of the variational posterior of F(i). Plugging Eqn. (7) into

Eqn. (6) and Eqn. (5), we have

Eq(f)[(y − FwT )T (y − FwT )] =
−N

2
[log σ2 + log 2π +

1

σ2

∑
i

((yi − ν(i)f wT )2 + wΣ
(i)
f wT )] . (8)

With the analytical form in Eqn. (8), we can minimize the exact ELBO for our regression model
without any approximation.

Predictive Distributions. Although our model mainly focuses on providing explanations, it can
also perform prediction with the predictive distribution. In the following, we derive the predictive
distribution of our regression and classification model with the variational distributions. Given a set
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Figure S1: Overview of EDGE with a mixing weight given by an MLP.

of testing episodes X∗ ∈ RN∗T×(ds+da), we first compute the variational posterior of their GP outputs
f∗ according to Eqn. (3).

q(f∗) =

∫
p(f∗|u)q(u)du = N (KX∗ZK

−1/2
ZZ µv,KX∗X +KX∗ZK

−1/2
ZZ (S− I)K

−1/2
ZZ KT

X∗Z) , (9)

where {µv,S} are the solved variational parameters. Below, we denote the mean and covariance matrix
in q(f∗) as µ∗ and Σ∗. After obtaining q(f∗), we then discuss how to conduct prediction in our regression
and classification model. Regarding the regression model, which has a Gaussian likelihood, we can
directly compute the marginal likelihood distribution as the predictive distribution, i.e.,

p(y) =

∫
p(y|f∗)q(f∗)df∗ = N (µy,Σy) , (10)

where µy ∈ RN∗ can be computed as

µy = E[y] = E[F∗w
T ] = ν∗w

T , (11)

where ν∗ ∈ RN∗×T is the matrix form of µ∗. Then ,we compute Σy ∈ RN∗×N∗ as

Σy = Var[y] = Cov[F∗w
T ,F∗w

T ] + Iσ2 , (12)

where Cov[(F∗w
T )i, (F∗w

T )j ] = w(Σ∗)iT :(i+1)T,jT :(j+1)TwT . After computing the marginal predictive
distribution, we can make prediction using its mean µy and access the prediction uncertainty from Σy.

For the classification model, the marginal likelihood is intractable due to the non-Gaussian likeli-
hood. We follow the prediction procedure proposed in [8] and use the MC method to make predictions.
Specifically, we first sample B samples from q(f∗) and compute the conditional likelihood distribution
p(y|f∗) using the drawn samples. Then, we compute the mean of the probability in the conditional
distributions (i.e., 1

B

∑
b softmax(F (b)WT )) as the final predictions.

EDGE with an Input-specific Mixing Weight. Recall that our proposed model can provide
input-specific explanations by replacing the constant mixing weight with a neural network. As is shown
in Fig. S1, we use a simple MLP eφw with three layers, i.e., a linear layer with T number of neurons,
a LeakyReLU activation layer, and a linear layer with TK number of neurons. Given the episode
encoding of N episodes C ∈ RN×T×2q, in which each element is the concatenation of that time step’s

unique embedding and the episode embedding of the corresponding episode (i.e., [h
(i)
t , e(i)]). We first

sum the last dimension of each element and obtain C′ ∈ RN×T (i.e., C′ =
∑
c C·,·,c). Second, we input

C′ into the network and get the corresponding output eφw
(C) ∈ RN×TK , where K is the total number

of classes in our classification model. Third, we transform eφw
(C) into the input-dependent mixing

weight Wx ∈ RN×T×K . Finally, we manipulate the GP output F ∈ RN×T with Wx and obtain the
predictions P ∈ RN×K . To ensure the explainability and stability, we borrow the idea from [1] and
design a local-linear regularization for eφw

. Note that since our feature extractor is non-parametric,
the regularization proposed in [1] is not applicable to our model. Specifically, to ensure local linearity,
we propose to minimize Le = ‖eφw

(C′) − eφw
(C′ + εc)‖1 together with the ELBO, where ε is a local
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Table S1: Hyper-parameter choices of our method and the baseline approaches in the selected games.
The numbers in the bracket of “CNN” represent the number of kernels in each layer. The numbers in
the bracket of “Embedding”, “MLP”, and “GRU” refer to the hidden dimensions.

Games
Hyper-parameters shared by our method and the baseline approaches Hyper-parameters unique to our method

Observation/State encoder Action encoder RNN encoder/classifier Batch size Epochs Optimizer learning rate Number of inducing points λ
Pong CNN(32, 32, 32, 16) Embedding(16) GRU (q =4) 40 100 Adam 0.01 100 0.1
You-Shall-Not-Pass MLP(64, 32) MLP(64, 32) GRU (q = 8) 40 200 Adam 0.01 600 0.01
Kick-And-Defend MLP(64, 32) MLP(64, 32) GRU (q = 8) 40 200 Adam 0.01 600 0.01
CartPole MLP(32, 16) Embedding(4)→MLP(32, 16) GRU (q = 4) 40 200 Adam 0.01 100 0.01
Pendulum MLP(32, 16) MLP(32, 16) GRU (q = 4) 40 100 Adam 0.01 600 0.01

random perturbation added to the C′. By minimizing Le, we can let eφw to be almost a constant
around the local area of each input and thus force the prediction model to be local-linear. In this
work, we only apply this input-specific mixing weight to the classification model because it will make
the exact computation of the expected log-likelihood in the regression model much more complicated
and even intractable.

S2 Implementation Details and Experiment Setups

S2.1 Implementations and Hyper-parameter selections

Implementations. We implement EDGE using the pytorch [22] and the gpytorch [8] package.
Regarding the baseline approaches, we implemented them based on the codes released in their original
paper – Rudder: https://github.com/ml-jku/rudder; Input-Cell Attention RNN used in the
saliency methods: https://github.com/ayaabdelsalam91/Input-Cell-Attention, saliency
methods: https://github.com/PAIR-code/saliency; Attention: https://github.com/sarahwi
e/attention; Rational Net: https://github.com/taolei87/rcnn. A preliminary version of our
software system with EDGE and all the baseline approaches is attached to the supplementary material.

Hyper-parameters. Table S1 shows the hyper-parameter choices of our experiments. First, we
discuss the hyper-parameters that are shared across all the methods – network structures and training
hyper-parameters. Regarding network structures, recall that we concatenate the state/observation and
action at each step before inputting them to an RNN. More specifically, we apply a state/observation
encoder and an action encoder to transform the original states and actions into a hidden representation.
Since different games have different forms of states and actions, we use different network architectures
for them. In the pong game, state/observation is an image of the current snapshot of the environment,
and action is discrete. Here, we use a CNN with 4 layers, in which each layer has the kernel size of 3, the
stride size of 2, and the “ReLU” activation function, as the state/observation encoder and an Embed-
ding layer as the action encoder. Regarding the MuJoCo and Pendulum games, both observation/state
and action are vectors with continuous values. In these games, we directly concatenate the state and
action and input them into an MLP encoder. For the CartPole games, where the state is a continuous
vector and action is discrete, we transform the action into a continuous vector using an Embedding
layer and input it together with the state into an MLP encoder. With the hidden representations of
each time step, we then input it into an RNN with GRU cells except for the RNN in RNN+Saliency
(In RNN+Saliency, we follow the original setup in [13] and use LSTM as the RNN cell). We adopt the
widely applied “Tanh” attention as the attention layer in our attention+RNN model. For the baseline
approaches, we directly use the RNN as the predictor (i.e., Seq2one structure). For our method, as
is introduced in Section 3.2, we use the RNN together with a one-layer MLP to derive the time-step
embedding and the episode embedding. As for the training hyper-parameters, our method shares the
same choices as the baseline approaches except for the learning rate in the Kick-And-Defend game (See
Table S1 for detailed values). Second, our method introduces two unique hyper-parameters – number
of inducing points (M) and λ, where λ represents the coefficient of the lasso regularization added on
the mixing weight (To encourage more understandable explanations, we add a lasso regularization on
the mixing weight W/w). Table S1 shows the choice of these two hyper-parameters in each game. In
Section S3, we further study the sensitivity of our method against M and λ.
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Table S2: Descriptions of the episode dataset of each game. “Discrete (X)” refers to categorical
actions with the X possible choices. “Vector (X)” refers to continuous state/action vectors with the
dimensionality of X. “Classification (2)” stands for the classification task with 2 possible classes. To
enable batch operation, we pad all the episodes in the same game to the same length T .

Games Observation/state Action T Training size Testing size Task type
Pong Image (80, 80, 1) Discrete (6) 200 21500 1880 Classification (2)
You-Shall-Not-Pass Vector (380) Vector (17) 200 31900 2000 Classification (2)
Kick-And-Defend Vector (380) Vector (17) 200 31500 2000 Classification (2)
CartPole Vector (4) Discrete (2) 200 29500 4200 Regression
Pendulum Vector (3) Vector (1) 100 28000 4000 Regression

S2.2 Experiment Setups

Selected games, agents, and episodes. In our experiments, we select three games with delayed
rewards – Atari pong, MuJoCo You-Shall-Not-Pass, and MuJoCo Kick-And-Defend, and two games
with instant rewards – OpenAI gym CartPole and Pendulum. For the descriptions of the Atari and
OpenAI gym games, readers could refer to [21, 5]. These three games are single-player games, and we
directly use the agent in each game as our target agent. Regarding MuJoCo games, readers could find
the introductions of their game environments and reward designs in [3]. Note that these games are
two-player games, we select the runner in You-Shall-Not-Pass and kicker in Kick-And-Defend as our
target agent. Section 4 mentioned that we download a well-trained policy for each game. Specifically,
we download the policy in the Pong game from https://github.com/greydanus/baby-a3c and the
policies in the MuJoCo games from https://github.com/openai/multiagent-competition. For the
CartPole and Pendulum game, we get the agent from https://github.com/DLR-RM/rl-trained-age

nts/tree/d81fcd61cef4599564c859297ea68bacf677db6b/ppo. All the agents are trained with policy
gradient methods (A3C for the pong policy and PPO for the MuJoCO and OpenAI Gym policies).
After obtaining the target agents, we run each agent in the corresponding environment and collect
a set of training and testing episodes by varying the random seed. Table S2 shows the descriptions
of these episode datasets including training-testing split, state-action dimensions, and episode length.
Table S2 also shows the type of prediction task on each game. Regarding the games with delayed
rewards, we conduct the classification with 2 possible classes (i.e., the target agent wins or losses a
game). For the games with instant rewards, we conduct the regression task. In our experiments, we
use the training set to train the explanation models and the testing set for evaluations and use cases.
Supplementary material includes the trained explanation models used in evaluations and use cases.

Computational resources. In our experiments, we use a server with 4 NVIDIA RTX A6000 GPUs
to train and test the explanation models.

Other Related Issues. As is introduced above, the existing assets used in our experiments are
the pretrained agents. We checked the GitHub repositories, from where we download them, and do
not find the license information for the Pong and MuJoCO policies. The license for the CartPole and
Pendulum is the MIT License. Since all the agents are just neural networks rather than actual data,
they do not contains personally identifiable information or offensive content.

S3 Additional Evaluations on Games with Delayed Rewards

Recall that, besides evaluating the explanation fidelity with regard to the original RL agent and
environment, we also compare our method with the baselines approaches from the following dimensions:
reward prediction performance, explainability, stability, and efficiency. In this section, we introduce
the designs of these experiments on the games with delayed rewards and discuss the corresponding
results. Section S5 will present these evaluations on the games with instant rewards. Note that we
apply the input-specific mixing weight to our classification model, in this section, we report the results
of our method with a constant mixing weight (denoted as EDGE) and that with an input-specific mixing
weight (denoted as EDGE x).
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Table S3: The testing accuracy of each method on the selected games. “EDGE x” refers to our model
with an input-specific mixing weight. Note that “Rudder” is designed only for regression tasks, we use
it to directly predict the value of yi and report the MAE (i.e., 1

N

∑
i |ŷi − yi|).

Games Rudder Saliency (%) Attention (%) RatNet (%) EDGE (%) EDGE x (%)

Pong 0.012 88.9 99.9 97.3 99.9 99.9
You-Shall-Not-Pass 0.018 99.2 99.1 99.3 99.2 99.1
Kick-And-Defend 0.011 98.3 98.3 98.8 99.7 98.9
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(a) Mean and standard error of the explanability and stability scores obtained by each saliency method. “IntGrad” refers
to the integrated gradient and “UniIntGrad” stands to the integrated gradient with uniform baseline. The stability of
each saliency method on the Pong game is 0.
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(b) Mean and standard error of the explanability and stability scores obtained by EDGE and the baseline approaches. The
stability of EDGE on all the games is 0. The stability of Rudder and Saliency method on the Pong game is also 0.

Figure S2: Explainability and stability comparison across the selected explanation methods.

Model Performance. To evaluate how well each method could predict the final rewards, we test
the prediction model in each method on the testing episodes and record the testing accuracy of each
game in Table S3. As we can first observe from the table, all the methods could obtain a decent
prediction performance except for the saliency method on the Pong game. We take a closer look at
this case and find that the RNN method in the saliency method completely biases towards the winning
episodes on the Pong game and cannot recognize the losing ones. Table S3 also shows that overall EDGE
establishes the highest testing accuracy. This result confirms the benefits of our GP feature extractor
(i.e., capturing the time step and episode correlations). Finally, we observe that the input-specific
mixing weight slightly reduces the testing accuracy of our proposed method. We speculate that this
is because the additional model capacity introduced by the local linear MLP causes overfitting. This
overfitting problem can be mitigated by increasing the regularization strength.

Explainability and Stability. After evaluating the performances of the prediction models, we
then evaluate the explainability and the stability of each selected explanation method. Specifically,
explainability represents how well an explanation method could explain the prediction model. In our
evaluation, we use the metric proposed in [7, 12, 27] to quantify the explainability. Formally, given
a normalized explanation Ei ∈ RT of an input episode Xi, we define the explainability metric as
−log F ci(Ei � Xi). Here Ei � Xi represents multiplying each entity (i.e., the state and action at
each step) in Xi with the corresponding element in Ei, encoding the overlap between the object of
interest and the concentration of the explanation. F ci(·) refers to the model prediction of the true
class of Xi. By viewing the explanation as weights of input entities, a faithful explanation should
weight important entities more highly than less important ones and thus give rise to a higher predicted
class score and a lower metric value. Note that we apply the top-K normalization, i.e., setting the
value of the top-K important time steps as 1 and the rest time steps as 0. We do not use the 0-1
normalization because multiplying it with discrete actions will result in invalid actions. It should also
be noted that explainability evaluates the faithfulness of the explanation with regard to the prediction
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Figure S3: Mean and standard error of the fidelity scores obtained by our method, selected baselines,
and the value function. Note that we use the saliency method demonstrates the highest explainability
(i.e., integrated gradient) in this experiment (See Fig. S2(a)).

model. We do not need to keep the perturbations (i.e., Ei � Xi) to be physically realistic. In our
experiments, we set K = 10/20/30. Fig. S2(b) shows the explanability comparisons between EDGE and
the baseline approaches. First, we observe that neither Attention nor Rational Net can consistently
outperform the post-training explanation approaches (i.e., saliency methods and Rudder). This result
confirm the first limitation of the existing self-explainable methods discussed in Section 3.2, i.e., adding
the explanation module in front of the prediction model cannot faithfully explain the associations
learned by the prediction model. In comparison, with a different explanation module design, EDGE
is able to outperform the baseline approaches in most setups. This result verifies the effectiveness of
our explanation module design. This result also confirms that by capturing the unique correlations
exhibited in the RL episodes, our method could better fit these episodes and thus give rise to higher
explainability. We notice a corner case on the You-Shall-Not-Pass game where the saliency method
shows a higher explainability than our method. As part of future work, we will investigate the reasons
behind this result. Our future work will also explore the reasons behind the different performance of
EDGE and EDGE x on these games. Note that Fig. S2(a) shows the comparison between the six selected
saliency methods. Overall, the integrated gradient demonstrates the highest explainability on the
selected games. We also observe that all the saliency methods show a similar performance on the Pong
games. We speculate this is caused by the model bias mentioned above.

In addition to explainability, we also evaluate the stability of each explanation method against
random perturbations added to the input. Specifically, we use the following metric [27] to evaluate

the stability: Eεs∼N (0,σs
s)
‖E(X,F c)−E(X+εs,F

c)‖2
‖εs‖2 , where σss controls the perturbation strength. In our

experiments, we set it as 0.05 times of the maximum value range of input features. A lower metric
value represents a more stable explanation. Here, we use the MC method to estimate the expectation,
i.e., sampling εs 10 times and computing the mean of the 10 metric values obtained from the sampled
εs. Note that to ensure the legitimacy of the perturbation, we only add εs to the states and actions
with continuous values. Fig. S2 shows the results of our methods and all the comparison baselines.
As shown in the figure, EDGE demonstrates the lowest the metric value (i.e., 0). This is because the
explanation of EDGE is a global explanation, which is robust to input perturbation. In comparison,
replacing the constant mixing weight with a neural network jeopardizes the explanation stability. We
can further improve the stability of EDGE x by increasing the regularization strength or training set
size.

Fidelity. Section 4 shows the fidelity comparison between EDGE and the selected baseline approaches.
Here, we further show the fidelity of two other methods – EDGE x and the explanations drawn from the
value function. Regarding the second method, we use the value function of the target agent and treat
the time steps with the top-K value function outputs as the top-K important features. Fig. S3 shows
the comparison across all the methods. We first observe that the value function cannot faithfully reflect
the associations between input episodes and the final rewards. We believe there are two reasons behind
this result. First, the policy training inevitably introduces errors to the value function approximation,
resulting in inaccurate explanations. More importantly, value function expresses the expected total
return of a state, rather than the contribution of the current state to a game’s final reward. In other
words, it is not designed to capture the specific associations between episodes and their final rewards.
Consequentially, the explanations drawn from the value function cannot faithfully represent the above
associations. Note that since all of the target agent are trained by policy gradient, we use their
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Table S4: Training/explanation time of each method on the selected games. Regarding the saliency
method, we record the explanation time of the integrated gradient method, which demonstrates the
highest explanability (See Fig. S2(a)).

Games Rudder Saliency Attention RatNet EDGE EDGE x

Pong 7:05min/0.002s 16:15min/0.02s 6:49min/0.002s 7:26min/0.002s 7:20min/0.002s 07:42min/0.007s
You-Shall-Not-Pass 2:49min/0.0002s 4:41min/0.172s 2:43min/0.0003s 2:50min/0.0002s 3:40min/0.0002s 03:50min/0.011s
Kick-And-Defend 1:57min/0.0001s 2:54min/0.132s 1:55min/0.0001s 2:02min/0.0002s 3:08min/0.0002s 03:31min/0.009s
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(a) Evaluation performance comparison between the models trained with different number of inducing points.
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(b) Evaluation performance comparison between the models trained with different λ.

Figure S4: Hyper-parameter sensitivity test results of EDGE on the Kick-And-Defend game. EDGE refers
to our model with a constant mixing weight.

value networks in our evaluation. Our future work will evaluate the effectiveness of using Q network
(function) to derive explanation. Second, Fig. S3 also shows that EDGE x has a slight worse fidelity
than EDGE . We speculate this is caused by its worse model performance and lower explainability.
Finally, we notice that the fidelity in Fig. S3 is not strictly aligned with the explanability in Fig. S2.
In other words, there are some cases where an explanation with a high explanability cannot achieve
a high fidelity to the RL agent. As part of future works, we will take a closer look into these corner
cases and investigate the reasons behind their results.

Efficiency. Table S4 shows the training/explanation time of each method. For training, we record
the run time of one training epoch. Regarding explanation, we record the run time of deriving one
explanation. As we can first observe from the Table, our methods (i.e., EDGE and EDGE x) introduce
only a slight training overhead compared to the baseline approaches. This confirms the efficiency of
our parameter learning method. In addition, since our explanations can be directly drawn from the
mixing weight, the explanation process takes negligible time. Similarly, the explanation process of all
the other methods is also very fast, except for the integrated gradient method, which is an ensemble
method requiring multiple gradient computations in one explanation.

Hyper-parameter Sensitivity. Finally, we test the sensitivity of our model performance against the
different choices of the unique hyper-parameters introduced by our method (i.e., number of inducing
points - M and lasso regularization coefficient - λ). Specifically, we first fix λ = 0.01 and vary
M = 200/400/600/800/1000. For each choice of M , we train our explanation model, run the above
evaluations, and record the corresponding results in Fig. S4(a). We can roughly observe two trends
from the figure – (1) the model performance, explainability, and fidelity get better as M increases; (2)
the training time becomes longer as M increases. These trends reflect the general model performance
and training efficiency trade-off introduced by inducing points, i.e., using more inducing points will
improve the model performance but reduce the training efficiency. Despite the existence of this trade-
off, Fig. S4(a) also demonstrates that the model is already able to achieve a decent performance with
M = 600 and the training time of M = 600 is acceptable (introducing about 13.9% extra training
time compared to M = 200). This result matches with the finding in [25]. That is, a small number of
inducing points is enough for decent model performance, and the training time increases slowly in a
range of M . Overall, this experiment shows that by choosing M within a reasonable range, our method
could achieve a superior performance without introducing too much overhead compared to the baseline
approaches. This property escalates the practicability of our method in that users do not need to
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Figure S5: Time step importance of the target agent in the Kick-And-Defend game.

Atari - Pong MuJoCo - You-Shall-Not-Pass MuJoCo - Kick-And-Defend

Figure S6: Illustrations of the time step correlations and episode correlations extracted by EDGE. For
each game, we show the correlations between 40 episodes (left figure), the time step correlations of a
winning episode (middle figure), and the time step correlations of a losing episode (right figure).

exhaustively search for the optimal hyper-parameter choices to achieve a decent performance. Second,
we fix M = 600 and vary λ = 0.1/0.01/0.001/0.0001/0.00001. Fig. S4(b) shows the results of each
model. As we can first observe from the figure, different choices of λ have a minor influence upon the
model performance and the training time. Fig. S4(b) also shows a general trend that the explainability
and fidelity get higher as λ increases. This result confirms the benefits of lasso regularization to
variable selection in our model. The results of varying λ suggest that users could choose a relatively
large regularization strength when applying our method.

S4 Additional Use Cases on Games with Delayed Rewards

In this section, we show more experiment results and discussions of the use cases introduced in Section
5. Note that, following Section 5, we use EDGE with a constant mixing weight in the use cases.

Understanding agent behaviour. Section 5 visualizes the time steps importance obtained by
our method in the Pong and You-Shall-Not-Pass game. Here, we show the explanations in the Kick-
And-Defend game and the correlations extracted by our method. Fig. S5 shows the game episodes
and the time step importance extracted by our method. Similar to the Pong and You-Shall-Not-
Pass game, EDGE provides human-understandable explanations in the Kick-And-Defend game. For
example, in the winning game, our explanation highlights the time steps when the kicker shoots the
ball. This explanation indicates that the kicker (red agent) wins because it shoots a difficult ball
that the keeper fails to defend. Fig. S6 visualizes the episode correlations Ke(X,X) and time step
correlations Kt(X,X) in the selected games. As we can first observe from the figure, the episode
correlations demonstrate clear cluster structures. More specifically, in the Pong and Kick-And-Defend
game, the episodes form two clusters. After checking the episodes in each cluster, we surprisingly find
that the episodes in the same cluster are all winning/losing episodes. In other words, our method
successfully groups the games with the same result into one cluster. In the You-Shall-Not-Pass game,
despite the episodes have more than two clusters, we also find that each cluster is very pure in terms
of the game results with only a few outliers. This result further validates the effectiveness of our
method in modeling the joint efforts between episodes. Second, we can also observe that the winning
and losing episodes have different time step correlations. Specifically, the losing episodes tend to have
more concentrated correlations at the last few steps, whether the time step correlations of the winning
episodes are more scattered. As is discussed in Section 3.2, these time step correlations can be used
to generated episode-specific explanations from the global ones.

Launching Adversarial Attacks. As is discussed in Section 5, we also experiment with the
influence of the number of commonly critical steps K upon the attack performances. Specifically,
we set K = 10/20/30 and record the corresponding attack results of each explanation method in
Table S5. Table S5 first shows that the exploitability of each method improves as perturbing more
actions (i.e., enlarging K). We also observe that overall EDGE triggers the most significant performance
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Table S5: The changes in target agent’s win rate before/after attacks with different choices of K. We
ran each experiment three times and report the mean and standard error. Section S6 further shows
the result of a hypothesis test.

Games K Rudder Saliency Attention RatNet Our

Pong
10 -4.33 (5.13) -12.33 (2.62) -5.60 (1.18) -13.20 (1.88) -61.87 (3.92)
20 -5.60 (1.64) -22.13 (1.23) -16.27 (1.27) -23.20 (4.33) -64.00 (2.45)
30 -19.93 (4.43) -30.33 (0.47) -25.27 (1.79) -29.20 (4.24) -65.47 (2.90)

You-Shall-Not-Pass
10 -9.73 (3.80) -6.40 (1.78) -7.60 (1.77) -3.54 (2.04) -9.60 (2.95)
20 -21.47 (5.28) -21.53 (3.49) -24.27 (6.67) -13.40 (5.39) -29.33 (6.55)
30 -32.53 (4.72) -29.33 (3.68) -33.93 (5.77) -30.00 (1.63) -35.13 (2.29)

Kick-And-Defend
10 -6.60 (2.95) -6.00 (6.56) -5.93 (2.00) -2.40 (3.08) -8.67 (4.73)
20 -14.13 (0.81) -26.00 (3.46) -27.13 (6.02) -4.20 (1.59) -33.40 (7.53)
30 -21.80 (3.70) -37.87 (6.31) -41.20 (4.70) -7.13 (2.50) -43.47 (4.01)

Table S6: Additional results of our patch methods. The upper table shows the patching results of
varying the mixing probability P on the Pong game. The low tables shows the patching result of
changing the exploration budget B on three games. We ran each experiment three times and report
the mean and standard error. Section S6 further shows the result of a hypothesis test.

Games Setups Rudder Saliency Attention RatNet EDGE

Pong
P=0.14 +0.68 (0.39) 0.08 (0.06) +0.13 (0.12) -1.77 (0.53) +1.28 (0.24)
P=1 +1.89 (1.25) -1.13 (0.96) -0.58 (1.81) -3.66 (1.35) +2.75 (0.65)

Pong
B=10 +1.89 (1.25) -1.13 (0.96) -0.58 (1.81) -3.66 (1.35) +2.75 (0.65)
B=20 +4.48 (0.72) -1.91 (1.40) -4.00 (1.06) -2.58 (3.61) +4.84 (1.91)
B=30 +3.28 (0.88) -2.38 (1.74) -1.23 (1.00) -5.50 (0.84) +0.80 (0.57)

You-Shall-Not-Pass
B=10 +1.76 (0.17) +0.92 (0.32) +0.44 (0.06) +1.68 (0.50) +2.91 (0.32)
B=20 +1.66 (0.15) +0.47 (0.12) +0.31 (0.15) +1.56 (0.25) +3.01 (0.34)
B=30 +1.34 (0.24) +0.13 (0.11) +0.20 (0.06) +1.42 (0.09) +2.79 (0.18)

Kick-And-Defend B=10 +0.96 (0.1) +1.17 (0.17) +0.57 (0.04) +1.21 (0.16) +1.21 (0.13)
B=20 +3.16 (0.49) +3.21 (0.18) +2.09 (0.06) +2.43 (0.39) +4.02 (0.31)
B=30 +3.11 (0.28) +2.90 (0.30) +1.84 (0.26) +3.57 (0.32) +3.92 (0.65)

drop in all the setups except one case. We defer to future work to study the reason behind that case.
Besides summarizing the most critical time steps, an attacker could also record the states of the critical
time steps and launch attacks at the most important states (if the total number of the state is within a
reasonable range). Our future work will compare the exploitability between the attack based on time
steps and the attack based on states. Future works could also explore combining the explanation with
the existing adversarial attacks (e.g., manipulating the target agent’s observation only at the critical
time steps identified by the explanation methods).

Patching Policy Errors. As shown in Table 1 in Section 5, our patching method jeopardizes the
agent’s winning rate on the Pong game when using Attention and Rationale Net as the explanation
method. This motivates us to explore a probabilistic mixing policy. That is, when the current state
is in the look-up table, the agent chooses the corresponding action in the table with a probability
P and the action given by its original policy with the probability 1 − P . To decide the value of P ,
we run the agent’s original policy in the Pong environment for Na games and record the number of
losing games that encounter the states stored in the look-up table (i.e., Nl). We compute P = Nl/Na,
representing the probability of the agent running into the states in the look-up table and eventually
losing the corresponding game. In our experiment, we set Na = 500 and compute P = 0.14. We use
this probability to rerun the patching method on the Pong game and record the changes in the agent’s
winning rate before/after patching in the upper table of Table S6. As we can observe from the table,
a lower mixing probability indeed alleviates the false positive introduced by Attention and Rationale
Net. At the same time, it also decreases the effectiveness of the other explanation methods. This result
indicates that users could start with a conservative patching policy by setting a small value for P and
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Table S7: The testing MAE of each method on games with instant rewards.
Games Rudder Saliency Attention RatNet EDGE

Cartpole 0.01 0.03 0.006 0.035 7e-05
Pendulum 0.006 0.008 0.005 0.03 0.009

increase the probability if aiming for a better patching performance. Besides the probabilistic mixing
policy, we also study the influence of look-up table size on the patching performance. The look-up
table size is decided by the exploration budget B and the number of continuous critical steps. In this
experiment, we vary the look-up table size by setting different B. Specifically, we set B = 10/20/30 and
report the corresponding patching performance in the lower table of Table S6. Overall, we observe that
the patch performance improves as B increases from 10 to 20 and drops as B reaches 30. This result
indicates that as the look-up table size increases, it includes more losing games and their corresponding
remediation policies. As a result, the patched policy is able to correct more errors and thus achieve a
higher winning rate. Oppositely, adding more states into the look-up table will also introduce more new
errors. This is because a state may occur both in a winning game and a losing game, and changing
the actions in an original winning game may, unfortunately, result in a loss. When the table size
reaches a certain point (30 in our experiment), the new errors start to dominate the patched episodes,
causing a winning rate drop. This result implies that the users may need to search for an optimal
choice of B to get the highest patching performance. As part of future work, we will study the corner
cases in this experiment and explore how to search for an optimal look-up table size more systemically
and efficiently. Note that the patching results of the saliency method are all zeros on the Pong game
because it fails to search for any successful remediation. As a result, the look-up table is empty in
those setups. We defer to future work to study the reason behind this result.

Rather than using a mixed policy, we also tried to enhance the original policy via behavior cloning
(i.e., fine-tune the policy network with the collected state-action pairs). We found this strategy barely
works because the policy network oftentimes “forgets” its learned policy after the behavior cloning.
Note that we perform random exploration in our method. If an oracle or a better policy is available, we
can perform more efficient exploration by mimicking their actions at the critical steps. Going beyond
mixed policy or learning from oracle, a more general patch solution would be to redesign the reward
function based on the explanation results (e.g., adding some intermediate rewards to guide the agent
taking correct actions at the important steps). As part of future work, we will investigate how to
design such intermediate rewards.

S5 Evaluation on Games with Instant Rewards

In this section, we evaluate our proposed method on two games with instant rewards, i.e., CartPole
and Pendulum. Similar to the evaluations on the games with delayed rewards, we also compare EDGE

with the baseline approaches from the following five dimensions: model performance, explainability,
stability, fidelity, and efficiency. In the following, we introduce the setup of each experiment and discuss
the corresponding experiment results. As discussed above, we do not apply the input-specific mixing
weight to the regression method in this paper. As a result, we only report the results of our model
with a constant mixing weight (denoted as EDGE).

Model Performance. Table S7 shows the testing MAE (i.e., 1
N

∑
i |ŷi−yi|) of the prediction model

in each explanation method. Note that since we conduct regression on these games, we use the MAE
instead of accuracy as the metric. As we can observe from the table, EDGE demonstrates the lowest
MAE on both games, indicating the best prediction performance. This result further confirms the
effectiveness of our model design in fitting RL episodes.

Explainability and Stability. In this evaluation, we use a different explainability metric from
the classification tasks. Specifically, we define the explainability metric of the regression tasks as
|F (Ei�Xi)−F (Xi)|. This metric is the MAE between the model prediction of the original input and
the input weighted by the explanation. A faithful explanation should highlight the important entities
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(a) Mean and standard error of the explanability and stability scores obtained by each saliency method.
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(b) Mean and standard error of the explanability, stability, and fidelity scores obtained by EDGE and the baseline approaches.
The stability of EDGE on all the games is 0.

Figure S7: Explainability, stability, and Fidelity comparison across the selected explanation methods.

Table S8: Training/explanation time of each method on the games with instant rewards. Regarding the
saliency method, we record the explanation time of the integrated gradient method, which demonstrates
the highest explanability (See Fig. S7(a)).

Games Rudder Saliency Attention RatNet EDGE

Cartpole 37s/3e-05s 1:52min/0.02s 32s/3e-05s 37s/3e-05s 1:44min/0.001s
Pendulum 33s/7.6e-05s 2:24min/0.057s 35s/7.5e-05s 37s/6.8e-05s 1:20min/0.003s

and thus keep the original prediction value and a lower metric value. Similarly, we also apply the
top-K normalization and set K = 10/20/30. The left two figures in Fig. S7(b) show the explainability
comparisons between EDGE and the baseline approaches. The results have a similar trend as those
in Fig. S2(b). This result further demonstrates the superiority of our method in explainability and
confirms the benefits of our explanation model design. Fig. S7(a) shows the explainability comparison
between the six selected saliency methods. Similar to the results in Fig. S2(a), the integrated gradient
also demonstrates the highest explainability on these two games. In this experiment, we apply the
same setup and metric as the experiment in Section S3 for the stability comparison. As shown in the
left two figures of Fig. S7(b), EDGE demonstrates lowest metric value, indicating the highest stability.

Fidelity. We apply the fidelity evaluation method introduced in Section 4 for the fidelity evaluation
on the CartPole and Pendulum game. The right two figures in Figure 7(b) show the fidelity compar-
ison between EDGE and the baseline approaches (we also use the integrated gradient as the saliency
method). We observe that benefiting from the superior model prediction performance and explain-
ability, our method demonstrates the highest fidelity in most setups. This result further demonstrates
the advantage of our self-explainable model over the comparison baselines.

Efficiency. Table S8 shows the training/explanation run time comparison between our method and
the baseline approaches. Since the games are simpler than the above games with delayed rewards.
The run times in Table S8 are smaller than those in Table S4. Similar to the results in Table S4, our
method introduces a small training overhead over the existing methods (up to 72s). The explanation
times are negligible for all the explanation methods. In summary, with the results in Section S3 and S5,
we can safely conclude that with our newly designed self-explainable model and the parameter learn-
ing procedure, EDGE improves the baseline approaches from multiple dimensions (i.e., explainability,
stability, and fidelity) without introducing too much extra computational cost.

S6 Hypothesis Test

To further demonstrate the statistical significance of our results, we conducted a paired t-test on
the experimental results in Table 1, S5, and S6. Specifically, given a set of results of our method
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Table S9: P-value of each experiment in Table 1.
Applications Games Rudder vs. EDGE Saliency vs. EDGE Attention vs. EDGE RatNet vs. EDGE

Target agent win rate
changes before/after attacks

Pong <0.001 0.003 0.001 0.009
MuJoCo-Y 0.19 0.13 0.35 0.04
MuJoCo-K 0.02 0.08 0.28 0.003

Target agent win rate
changes before/after patching

Pong 0.29 0.02 0.09 <0.001
MuJoCo-Y 0.005 0.006 0.006 0.009
MuJoCo-K 0.12 0.43 0.006 0.49

Victim agent win rate changes
before/after robustifying

MuJoCo-Y 0.002 0.001 0.006 0.008

Table S10: P-value of each experiment in Table S5.
Games K Rudder vs. EDGE Saliency vs. EDGE Attention vs. EDGE RatNet vs. EDGE

Pong
10 <0.001 <0.001 <0.001 <0.001
20 <0.001 0.002 <0.001 0.006
30 <0.001 0.003 0.001 0.009

You-Shall-Not-Pass
10 0.51 0.12 0.21 0.05
20 0.05 0.05 0.21 0.05
30 0.19 0.13 0.35 0.04

Kick-And-Defend
10 0.21 0.36 0.12 0.15
20 0.02 0.05 0.06 <0.001
30 0.02 0.08 0.28 0.003

(O = {O1, O2, O3}) and that of a baseline (B = {B1, B2, B3}), we first compute their difference
D = {Oi − Bi}, for i = 1, 2, 3. Our non hypothesis for attacks experiments is H01 : E[D] ≥ 0. The
non-hypothesis for policy patch and adversarial defense experiments is H02 : E[D] ≤ 0. Given these
non-hypothesis, we compute the p-value for the performance difference of each group of comparison
and show the values in Table S9, S10, and S11. For attacks, if p is small, we should reject the H01,
indicating our attack triggers a higher winning rate drop than the comparison baseline and thus has a
better exploitability. Regarding the patch and defense experiments, if p is small, we should reject the
H02, indicating our method enables a higher winning rate increase than the comparison baseline and
thus has a better performance. Overall, the results in Table S9, S10, and S11 are aligned with those
in Table 1, S5, and S6.

S7 User Study

Recall that Section 2 discusses that previous DRL explanation methods derive interpretations of in-
dividual actions by identifying the observation’s feature importance regarding the agent’s policy net-
work/value function output. Whereas our work highlights the time steps critical to an agent’s final
result in each episode (e.g., win or loss). In previous research, some researchers conducted user studies
to demonstrate the utility of their explanation methods from human perspectives (e.g., [9, 2] uses
interpretation to distinguish well-trained (good) and overfitted (bad) agents). In this work, we also
performed a user study to demonstrate the utility of our explanation method. Below, we describe the
design and results of our user study.

We obtained IRB approval and conducted a user study to compare our proposed explanation
method with a representative explanation method [9] that pinpoints the input features essential to
the agent’s individual actions via a saliency method. Specifically, we first recruited 30 participants
with different backgrounds in DRL and DRL explanations (4 participants have published paper(s) in
DRL explanation; 6 participants have read some papers about DRL explanation; 10 participants have
a general understanding of DRL explanation; 10 participants have never heard of DRL explanations.).
Then, we presented an online survey to these participants. This survey aims to compare our explanation
method with [9] from two perspectives. (1) How well can the explanations generated from the two
approaches help a user to pinpoint a good policy? (2) How well can the explanations help a user
perform episode forensics and thus understand why an agent fails or succeeds? We briefly describe the
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Table S11: P-value of each experiment in Table S6.
Games Setups Rudder vs. EDGE Saliency vs. EDGE Attention vs. EDGE RatNet vs. EDGE

Pong
P=0.14 0.05 0.005 0.004 <0.001
P=1 0.29 0.02 0.09 <0.001

Pong
B=10 0.29 0.02 0.09 <0.001
B=20 0.37 0.05 0.008 0.09
B=30 0.96 0.04 0.09 0.006

You-Shall-Not-Pass
B=10 0.005 0.006 0.006 0.009
B=20 0.03 0.002 0.006 0.004
B=30 <0.001 0.002 0.001 0.002

Kick-And-Defend
B=10 0.12 0.43 0.006 0.49
B=20 0.01 0.01 0.004 0.02
B=30 0.14 0.12 0.02 0.15

design of our user study and the study results below.
(1) Identifying a good policy: Given the representative episodes gathered from two agents of the

You-Shall-Not-Pass game (one well-trained and the other overfitted to one specific opponent, i.e., an
adversarial agent), we first derived explanations for each of these episodes using the aforementioned
interpretation methods. Second, we randomly partitioned the 30 participants into two equally-sized
groups and presented the episodes to each group. For Group-A, we also presented the explanations
that our method generates. For Group-B, we provided the interpretations that the other method [9]
generates. Based on the episodes and their corresponding interpretation, we asked each subject to
pinpoint the well-trained agent and asked whether the explanations help identify the good policy.
We first discovered that 11 out of 15 participants in Group-A correctly identified the well-trained
agent, and 63.6% of them found the explanation helpful. Regarding group-B, 10 out of 15 participants
identified the good policy, and 50% of them found the explanation helpful. From the above results, we
can get that 7 (11× 0.636) out of 15 participants in Group-A correctly identified the good policy with
the help of our explanations, and 5 (10 × 0.5) out of 15 participants in Group-B correctly identified
the good policy with the help of the explanations given by the baseline approach [9]. To compare
the ability of two explanation methods in facilitating good policy identification, we conducted a two
population proportion test [11]. Specifically, we first set the null hypothesis H0 as p1 = p2, where p1
and p2 are the probability of correctly identifying the good policy according to our explanations and
the explanations given by the baseline approach [9]. Then, we computed the sample probability for

each group – Group-A: p̂1 = 7/15; Group-B: p̂2 = 5/15 and the z statistic, i.e., z = (p̂1−p̂2)√
p̂c(1−p̂c)( 1

n+ 1
n )

,

in which p̂c = (7 + 5)/30 is the pooled sample proportion and n = 15 is the number of participants in
each group. Plugging in p̂1 and p̂2, we computed z = 0.745. Finally, we computed the percentile r of
z in the standard normal distribution and obtained the p-value as 2(1− r) = 0.456. Since the p-value
is not that small (e.g., ≤ 0.05 ), we fail to reject H0. This result shows that our method demonstrates
approximately the same utility as the existing explanations in identifying good/bad policies.

(2) Performing forensics: Given a set of representative episodes gathered from one agent, we used
the two above explanation methods to derive explanations for each episode. Then, we present to
participants the episodes along with the explanations generated by two different methods. We asked
the participants which explanation methods are more beneficial in helping the subject understand why
the agent fails/succeeds. We discovered that 21 participants (70% = 21/30) chose our method. This
discovery implies that interpreting by highlighting critical time steps could better facilitate episode
forensics than explaining by highlighting critical input to the action at each step. We further conducted
a binomial test [11] to demonstrate that our explanation method significantly outperforms the existing
method [9] in helping policy forensics. In this test, our null hypothesis H0 is p ≤ 0.5, where p is
the probability of choosing our explanation method as more helpful for policy forensics. Then, we
computed the percentile r of Y in the binomial distribution B(30, 0.5), where Y = 21 is the number
of participants that chose our method as the more helpful one. Finally, we compute the p-value as
1−r = 0.008. This small p-value means we should reject H0, indicating that our method is significantly
better than the baseline [9] in facilitating policy forensics.
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Table S12: Mean/Standard error/P -value of the attack performance of our method and the action
preference attack with different choices of K. Note that since the action preference attack is not appli-
cable to the You-Shall-Not-Pass and the Kick-And-Defend games, we only conducted the experiment
on the Pong game.

K Action preference attack EDGE

Pong
10 -50.34/0.94/0.04 -61.87/3.92
20 -61.33/1.25/0.19 -64.00/2.45
30 -62.33/0.94/0.17 -65.47/2.90

More details about our user study: Survey questions for Group-A: https://forms.gle/SfUCRC
WhZEag47gj9; Survey questions for Group-B: https://forms.gle/Kkj4z4wapCTDqXN76. Questions
1-3 are the same in both surveys. They ask about the participant’s background and whether he/she
understands the game rule and two types of explanations (We found all 30 participants correctly
answer Questions 2&3). Questions 4-7 are about identifying good/bad policies. We present four
episodes of the well-trained/overfitted agent together with different explanations to the participants
(We count a participant as correctly selecting the good policy only if the participant correctly answered
all questions.). Questions 9-10 are about forensic evaluation. They are the same in both surveys, where
the participants are presented with the same videos. Each video shows an episode of the same agent
together with explanations derived by our method and [9]. The participants are asked to choose which
explanation is more helpful. As mentioned above, we found that 21 out of 30 participants chose our
explanations in both questions.

S8 Comparison of Our Attack with An Existing Attack

As mentioned in Section 5, existing research has developed various attacks against DRL policies
(e.g., [10, 26, 17]). In this section, we compared our attack with the attack proposed in [17]. This
attack manipulates the observations at the selected time steps, whereas our attack changes the actions
at the important steps identified by our method. They cannot be directly compared due to the different
attack spaces (observation space vs. action space). To enable the comparison, we applied the time step
selection method developed in [17] to choose time steps and modify the actions at the selected steps.
Specifically, the time step selection method in [17] first computes the action preference at each step as
π(s, amax)−π(s, amin). Here, π is the target policy, which outputs the probability of each action. amax

and amin refers to the action with highest/lowest probability at the state s. Then, it ranks the action
preference and selects the time steps with high preference scores to launch its attack. As mentioned
above, in our experiment, we rank the action preference scores of states in each episode and randomly
change the actions at the states with top-K action preference scores (marked as Action preference at-
tack). We also conducted three groups of experiments and reported the mean/stand deviation/p-value
of the paired t-test with H01 : E[D] ≥ 0 as the null hypothesis. The results are shown in Table S12.
We observe from Table S12 that our attack has a stronger exploitability, confirming the advantage of
our method in identifying important steps. Note that the time step selection method in [17] cannot
be applied to the policy networks that directly output the action rather than the action probability
(e.g., the policy networks trained by the PPO algorithm). In our experiment, the policies of the You-
Shall-Not-Pass and the Kick-And-Defend games are trained by PPO. As such, [17] cannot be applied
to these two games and thus we only compared it with our method on the Pong game, where the agent
is trained with the A3C method.

S9 Potential Social Impact

Any work focusing on general statistical methods, machine learning models included, runs the risk of
those methods being used for purposes the authors did not consider. As one of these general purpose
tools, EDGE is designed to allow for new modes of understanding and improving Reinforcement Learning
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(RL) agents in particular.
Reinforcement learning has recently enjoyed successful application in many areas of computer

science. For example, gaming, robotics, natural language processing, and computer vision have all
seen advancements from RL [16]. With such wide areas of application, RL methods have naturally
extended to several business domains; some examples include business management [15], finance [14],
healthcare [6], and education [18]. This is to say, our work focuses on a general purpose tool whose
applications cannot be well forecast in advance. For any set of these applications, there will inevitably
be subsets considered harmful, and others considered beneficial; furthermore, the stated harms and
benefits will vary depending on the individuals surveyed.

In considering the potential benefits and harms that may result from our work, we turn to the many
such discussions focusing on other general purpose tools. Recently there has been a wide array of liter-
ature published on the fairness, benefits, biases, and harms of machine learning. These works focus on
aspects such as the biases and discriminatory behavior present in machine learning models, in addition
to mitigation strategies that should be employed in deployment and commercialization [4] [24] [20].

EDGE , as a tool to understand and improve RL methods, can be used to amplify biased or unfair
models. Conversely, it can also be used to understand the decision-making process of such systems
and enable the construction of strategies to mitigate these harmful factors. We consider this situation
analogous to that of open source tools; open source software enables hackers and criminals but simul-
taneously provides benefits to all of us, including visibility into the methods of those employing such
tools. In this way, we also believe it is important to construct tools such as EDGEso that we can further
understand and improve RL methods that have come before and after it.
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