
From Grim Reality to Practical Solution: Malware Classification in Real-World
Noise

Xian Wu∗ Wenbo Guo+ Jia Yan† Baris Coskun‡ Xinyu Xing∗
∗Northwestern University +UC Berkeley † Penn State ‡ AWS

Abstract—Malware datasets inevitably contain incorrect labels
due to the shortage of expertise and experience needed for sam-
ple labeling. Previous research demonstrated that a training
dataset with incorrectly labeled samples would result in inaccu-
rate model learning. To address this problem, researchers have
proposed various noise learning methods to offset the impact
of incorrectly labeled samples, and in image recognition and
text mining applications, these methods demonstrated great
success. In this work, we apply both representative and state-
of-the-art noise learning methods to real-world malware classi-
fication tasks. We surprisingly observe that none of the existing
methods could minimize incorrect labels’ impact. Through a
carefully designed experiment, we discover that the inefficacy
mainly results from extreme data imbalance and the high
percentage of incorrectly labeled data samples. As such, we
further propose a new noise learning method and name it
after MORSE. Unlike existing methods, MORSE customizes and
extends a state-of-the-art semi-supervised learning technique.
It takes possibly incorrectly labeled data as unlabeled data and
thus avoids their potential negative impact on model learning.
In MORSE, we also integrate a sample re-weighting method that
balances the training data usage in the model learning and thus
handles the data imbalance challenge. We evaluate MORSE on
both our synthesized and real-world datasets. We show that
MORSE could significantly outperform existing noise learning
methods and minimize the impact of incorrectly labeled data.

1. Introduction

The fight against malware has been bolstered not by the
increase in the cybersecurity community workforce but by
the significant advances in artificial intelligence. Recently,
many supervised deep learning (DL) techniques have been
introduced to improve malware classification (e.g., [1], [2],
[3]). Today, they have become a critical technique to help
the fight against malware threats. Under the facilitation of
these techniques, it becomes more efficient and effective to
categorize malware into corresponding families.

However, one key assumption behind these supervised
DL techniques is that the training data must have sufficient,
correct data labels. However, such a common assumption
does not always hold. In practice, labeling a malware sample
is a time-consuming, labor-intensive process. The malware

‡ This work does not relate to Baris Coskun’s position at Amazon.

label assignment heavily relies on an analyst’s professional
experience and expertise. As such, it is prevalent that a
malware sample could be assigned with an incorrect label.

Previous research indicated that incorrectly labeled data
could cause a supervised algorithm to learn an inaccurate
model. To address such a problem, researchers, therefore,
have proposed many so-called noise learning solutions to
offset the incorrectly labeled data’s impact on model learn-
ing (e.g., [4], [5], [6], [7], [8], [9], [10], [11]). In some typi-
cal ML applications (e.g., image recognition [12], [13], text
classification [14], [15], and speech recognition [16], [17])
– where some samples are mistakenly labeled – existing
works have demonstrated outstanding potential to minimize
incorrect labels’ impact. Some works even demonstrated that
the models learned from noisy training data could be as
accurate as those from immaculate training data.

In this work, we apply the successful noise learning
methods to real-world malware categorization tasks where
training data contained noisy labels. We surprisingly dis-
cover that the existing methods could not even learn a multi-
class malware classifier outperforming the classifier learned
directly on the noisy training dataset. To understand the rea-
son behind this discovery, we carefully design an experiment
and discovered that the unexpectedly low classifier learning
ability mainly comes from two aspects.

First, the malware dataset usually has an extreme data
imbalance issue compared with training data in other tasks,
like image recognization. For some malware families, the
available data samples are much fewer than those in other
families [18]. For example, the data imbalance ratio between
major and minor families is 70x in a Microsoft PE malware
dataset [19]. As we will elaborate in Section 3, this data
imbalance issue forces the learning process to be biased
toward the majority class. Second, the real-world malware
dataset could contain a higher ratio of incorrectly labeled
data for some malware families. Recent research [20], [21]
shows that datasets that use AntiVirus vendors to give labels
could introduce a high noisy label rate due to the errors of
AV or inappropriate aggregation mechanisms (e.g., MOTIF
dataset [21] has a noise rate of 40%). This error rate, or
in other words, the noise rate, is significantly higher than
we have witnessed on the image recognition task, which
amplifies the inefficacy of existing noise learning methods.

In this work, we propose a new noise learning method
to address the challenges imposed by the high noise rate
and extreme data imbalance. We name it after MORSE,

standing for Malware classificatiOn fRom noiSy labEls.
Technically speaking, our method first identifies the training
data possibly correctly labeled. Then, it treats these possibly
correct data as labeled data and the rest as unlabeled ones.
Further, it utilizes a customized semi-supervised learning
method to learn a classifier. Since the data samples less
likely to be correct are treated as unlabeled data, even if the
noise rate is relatively high, incorrect labels have a minimal
impact on training, which resolves the high noise challenge.

To handle the data imbalance issue, we further integrate
a sample re-weighting mechanism into our semi-supervised
learning approach. The re-weighting mechanism assigns a
higher weight to the samples associated with minor classes.
This ensures that our customized semi-supervised learning
method does not bias toward the majority classes. As we
will show in Section 6, our customized semi-supervised
learning method combined with sample re-weighting could
significantly minimize the impact of incorrect labels.

To the best of our knowledge, this research is the first
work that systematically evaluates existing noise learning
methods and pinpoints their limitations. Besides, we also
argue that MORSE is one of the pioneering works ex-
ploring classification on noisy malware training datasets.1
Using MORSE, we show that security professionals could
learn a relatively accurate malware classifier even if the
training data is highly skewed and some malware classes
contain more than 50% of incorrect labels. We demonstrate
that MORSE could outperform all existing noise learning
approaches in synthetic and real-world datasets. Last but
not least, we also show that MORSE does not introduce
significant learning overhead, which indicates our proposed
method could be used as an efficient, practical technical
solution for real-world malware classification tasks. We
release the source code, learning models, and datasets at the
repository https://github.com/nuwuxian/morse. In summary,
this paper makes the following contributions.
• We summarize existing noise learning methods, systemati-

cally evaluate their effectiveness in offsetting noisy labels’
impact, and point out their limitations in the malware
classification context.

• We propose a customized, extended semi-supervised
learning method to train a malware classifier from an
extremely imbalanced dataset with a large amount of
incorrectly labeled data samples.

• We implement our semi-supervised learning method as a
noise learning algorithm and evaluate its effectiveness and
efficiency in real-world and synthetic datasets where the
noise rate is high, and class imbalance is extreme.

2. Summary of Existing Methods

From the perspective of training data usage, existing
noise learning approaches could be classified into two kinds:

1. There is a recent work [22] exploring noise learning techniques in
malware identification. As we will elaborate in Section 7, this method,
however, is designed only for binary categorization and cannot be extended
to the tasks that assign malware to different families.

using all the noisy training data for training or employing
only the training data with possibly correct labels. From the
technical perspective, existing works primarily follow four
methods – ❶ sample selection, ❷ label sanitization, ❸ loss
robustification, and ❹ noise matrix estimation.
Sample selection minimizes the impact of noisy labels in
two steps (see Figure 1a). First, this method identifies the
incorrectly labeled samples in a training dataset. Second,
it eliminates or downplays these noisy samples from the
model training procedure. Take the research works [4], [12],
[23] for example. These methods first utilize the sample
loss as an indicator to determine label correctness. Then,
they train the corresponding model using only the identified
clean samples but not the entire noisy training data.

As is mentioned above, besides incorrect sample elim-
ination, downplaying the incorrectly labeled sample is also
a popular method of reducing the noisy labels’ impact. For
example, the works [5], [24] learn a weight for each training
sample. The weight indicates how likely the corresponding
sample’s label is correct. When training models, they, there-
fore, use this weight to adjust the impact of training samples.
The samples with lower weights play a less important role in
model training. Therefore, while using all data for training,
the proposed methods downplay the impact of noisy data.

Following these two works [5], [24], Jang et al. extend
this idea [6] and demonstrated a more vital ability to learn a
model from incorrectly labeled data. Technically, they first
employ MentorNet [25] to identify training data with correct
labels and assign them with higher weights. Second, they
utilize a data augmentation method, mixup [26], to blend
other training samples with relatively clean training samples.
The authors show that this data augmentation could further
offset the impact of noisy data upon the model learning.
Label sanitization uses the entire dataset for training. Dif-
ferent from sample selection, this method corrects label
errors and thus offsets their negative impact (see Figure 1b).
For example, the works [27], [7] both fuse the given labels
with model predicted labels. This idea ensures that data
samples’ incorrect labels could be potentially reset back
to their correct ones. Following these two works, a recent
work [28] introduces a new method to infer the correctness
of given labels and the predicted ones. Using this new
method, one could determine which labels (i.e., predicted or
given labels) should be used for parameter updates. Zhang
et al. show that this proposed method could theoretically
guarantee the improvement of model learning even if the
training dataset contains incorrect labels.
Loss robustification designs new loss functions and then
uses the entire noisy dataset for model learning (see Fig-
ure 1c). Research shows that incorrectly labeled data has a
different impact on loss functions. Inspired by this discovery,
the works [8], [29] proposed new loss functions robust
against noisy labels. For example, Zhang et al. [8] find that
the Mean Absolute Error (MAE) loss is more robust against
noisy labels. However, when using it to learn a model, the
learning process inevitably suffers from the under-fitting
issue. To benefit from MAE’s robustness and at the same
time avoid the under-fitting issue, Zhang et al. propose to

2

https://github.com/nuwuxian/morse

(a) Sample selection selects samples possibly correctly labeled
and then learns the decision boundary.

(b) Label sanitization corrects mistakenly labeled samples and
then learns the decision boundary.

(c) Loss robustification uses a new, robust loss function to
learn the decision boundary.

(d) Noise matrix estimation learns a transition matrix (“T”)
and then uses it to correct the inaccurate decision boundary.

Figure 1: The demonstration of existing noise learning methods in binary classification. Each geometry pattern represents
a sample. The circle and triangle pattern indicates the different label of the sample. The geometry with a cross indicates
the sample is incorrectly labeled. For example, circle with a cross denotes the sample is mistakenly labeled as “circle” and
its true label should be “triangle”. In each subfigure, the left shows the decision boundary learned directly from the noisy
training dataset, whereas the right depicts the decision boundary learned by the corresponding noise learning method.

combine the Cross-Entropy (CE) loss with the MAE loss.
They demonstrate that the combined loss functions provide
a better ability to learn a model under noisy datasets.

Loss robustification methods also introduce proper reg-
ularization terms to the loss functions. Recent research [30],
[31] discovers that a learning algorithm usually attempts to
fit the training data with clean labels at the early training
phase. The data with incorrect labels kick in their effects
usually at the later training phase. Motivated by this dis-
covery, a recent work [9] adds a regularization term to the
learning loss. The regularization term prevents the later-
stage learning process from significantly varying the model
(learned at the early stage). With this design, the noisy data
could impose less impact on model learning.
Noise matrix estimation learns a transition matrix from the
entire noisy dataset. The matrix indicates the probability that
a correct label was mistakenly flipped to a corresponding
incorrect label. As such, using this transition matrix, one
could flip the incorrect prediction result made by the model
trained on the noisy training dataset (see Figure 1d). To learn
a transition matrix accurately, past research proposes various
methods under different assumptions [10], [14], [32], [15],
[13], [33]. For example, Goldberger et al. [10] model the
noise transition matrix as part of the classifier. Using the
method commonly adopted for training a classifier, they
jointly estimate the classifier’s parameters and noise matrix.

3. Evaluation of Existing Methods

Existing research has demonstrated the effectiveness
of the above noise learning techniques in image and text
datasets. However, a security dataset containing incorrect
labels usually has its own characteristics, which imposes
challenges on these methods. In the following, we introduce
two real-world malware datasets with incorrect labels - a
Windows PE malware dataset and an Android malware

TABLE 1: Statistics of the Windows PE malware dataset.
ID Family # of Samples # of Training

samples
Noise rate

in training set
0 Benign 500 400 0.000
1 VirLock 900 800 0.005
2 WannaCry 920 820 0.002
3 Upatre 440 340 0.032
4 Cerber 1044 944 0.156
5 Urelas 572 472 0.011
6 WinActivator 166 66 0.106
7 Pykspa 744 644 0.019
8 Ramnit 324 224 0.295
9 Gamarue 608 508 0.750
10 InstallMonster 299 199 0.472
11 Locky 157 57 0.544

TABLE 2: The statistics of the Android malware dataset.

ID Family # of Samples # of Training
samples

Noise rate
in training set

0 Smserg 2687 2587 0.040
1 Benign 4683 4583 0.699
2 Autoins 200 100 0.150
3 Jiagu 678 578 0.235
4 Shedun 10867 10767 0.548
5 Wapron 857 757 0.136
6 Dnotua 136 36 0.583
7 Hiddad 185 85 0.000
8 Secneo 203 103 0.223
9 Triada 299 199 0.005

10 Secapk 155 55 0.055
11 Smspay 281 181 0.028
12 Qappusin 158 58 0.000

dataset. We discuss the uniqueness of these datasets and
use them to evaluate existing noise learning methods.

3.1. Dataset & Characteristics

Windows PE dataset. This dataset is obtained from a
security lab. It contains 500 benign executables and 6,174
malicious PE files. As shown in Table 1, the malicious
executables come from 11 unique malware families. Each
malware sample has been successfully reverse-engineered
and carefully analyzed by at least three security analysts

3

with 5+ years of malware analysis experience. As a result,
the labels provided in this dataset are 100% accurate. We
then generate noisy labels via a widely used labeling method
(i.e., labeling data using AntiVirus vendors). Specifically,
we first upload all executable files to VirusTotal [34] and
gather the labels provided by different vendors. We discover
that 11.38% PE files are provided with at least one wrong
label by a vendor. For example, our dataset assigns the
malware sample 2749fcf947b4cbc6a5551b2ecdbb8a06 into
the Locky family. On VirusTotal, 35.71% of vendors mark
it as Cerber or Upatre, with different malware families. We
then randomly change a PE sample’s label to one that other
vendors provided if a different label exists. In this way, we
construct a noisy dataset containing 13.88% incorrect labels.
Android dataset. We also use another real-world Android
malware dataset – VirusShare2018 [35], which is of a much
larger scale than the first dataset. This dataset contains 4,683
benign ware and 16,706 android malware, coming from 12
families (see Table 2). It is extremely hard to manually
check the label correctness for such a large-scale dataset.
As such, we automatically obtain clean/noisy labels via
VirusTotal. To obtain noisy labels, we follow a real-world
method [36] that uses the result of one select vendor to label
data (e.g., we adopted Ikarus [34]). To get clean labels, we
conduct a majority vote across all vendors. With the noisy
and clean labels, we construct a noisy training dataset with
a noise rate of 47.50%. This dataset simulates a real-world
noisy distribution on a large-scale dataset.

Compared with the image and text datasets, these two
malware datasets have the following key characteristics.
Data imbalance. The class distribution of our datasets is
extremely imbalanced. For example, in the Android dataset,
the sample number in the Shedun family is 300x more than
that in the Dnotua family. Different from some existing
malware datasets, where the imbalance comes from the
dominant number of benign samples and a small number of
malicious samples, our imbalance comes from the difference
in sample sizes between malware families. Since our goal
is to correctly classify malware families rather than con-
ducting anomaly detection where datasets have many more
benign samples than malicious ones, we do not consider the
imbalance between benign and malicious samples.
High noise ratio. The label quality of our malware data is
relatively lower than that of image datasets. To label image
samples, one could use cost-efficient crowdsourcing and
reduce the label noise rate. Unlike image labeling, labeling
security data requires extensive security expertise. Besides,
security analysts need to spend hundreds and even thousands
of hours zooming in on a suspicious program to determine
its actual maliciousness. As such, malware data are more
likely to be mistakenly labeled than images. For example,
malware family Dnotua in the Android dataset and Gamarue
in the PE dataset have a noise ratio of 58.3% and 75.0%,
respectively. This is way higher than noisy image datasets.
Non-uniform noise distribution. To bypass the detection
and counteract defense analysis, malware writers developed
and applied various techniques to manipulate their malicious
code. Malware writers usually have different expertise and

TABLE 3: Summary of our selected noise learning methods.
Category Representative Method State-of-the-art Method

Sample selection Coteaching+[12] Mentormix[6]
Label sanitization Bootstrap[27] LRT[28]

Loss robustification GCE[8] ELR[9]
Noise matrix estimation Noise-adaption[10] LIO[13]

TABLE 4: The test accuracy (recall), precision, and F1

score of existing noise learning methods on the PE dataset.
Each experiment runs six times under different parameter
initializations. The result in the cell contains the average
and standard deviation. “Vanilla DNN” indicates the perfor-
mance of the model learned from the noisy training dataset.

Methods Average (%) Class-11 Locky (%)
Accuracy Precision F1 Accuracy Precision F1

Vanilla DNN 93.08/0.25 93.65/0.51 92.57/0.36 44.33/3.78 96.34/4.22 60.48/3.22

Coteaching+ 87.39/0.65 92.24/0.39 87.90/1.13 2.00/2.89 99.44/1.84 3.92/3.16
p = 0.999 p = 0.998 p = 0.999 p = 0.999 p = 0.055 p = 0.996

Mentormix 92.34/0.10 93.40/0.14 92.32/0.28 41.17/4.13 95.24/1.34 57.82/2.14
p = 0.997 p = 0.812 p = 0.322 p = 0.767 p = 0.505 p = 0.434

Bootstrap 92.92/0.30 93.33/0.23 92.27/1.91 46.33/5.15 92.71/2.69 61.03/2.49
p = 0.876 p = 0.829 p = 0.503 p = 0.260 p = 0.858 p = 0.191

LRT 92.52/0.21 93.38/0.24 92.15/0.18 42.50/1.50 93.85/4.67 59.34/2.47
p = 0.995 p = 0.815 p = 0.817 p = 0.887 p = 0.753 p = 0.557

Noise-adaption 92.65/0.24 93.25/0.30 92.18/0.22 40.83/1.46 90.04/3.68 56.18/2.47
p = 0.978 p = 0.861 p = 0.488 p = 0.968 p = 0.968 p = 0.687

LIO 92.30/0.35 93.21/0.25 92.01/0.15 38.00/4.04 90.12/4.23 53.42/1.45
p = 0.990 p = 0.879 p = 0.435 p = 0.910 p = 0.958 p = 0.956

GCE 92.15/0.27 93.40/0.32 91.74/0.65 36.33/7.40 94.85/3.11 52.38/5.95
p = 0.998 p = 0.809 p = 0.962 p = 0.926 p = 0.705 p = 0.991

ELR 91.84/0.18 93.27/0.24 91.20/0.27 34.50/2.75 96.39/3.37 50.01/2.70
p = 0.999 p = 0.882 p = 0.998 p = 0.999 p = 0.493 p = 0.997

experience in misleading analysts’ reverse-engineering ef-
forts. Therefore, various malware may contain the footprints
of different anti-debugging, packing, and obfuscation tech-
niques. These techniques impose different difficulty levels in
determining a suspicious program’s maliciousness. As such,
the noise rates across malware families vary significantly.
For example, the PE dataset contains a noise rate as high as
75.0% (Gamarue) and as low as 0.2% (WannaCry).

3.2. Evaluation

Experiment Setup. To evaluate the effectiveness of existing
noisy label learning methods, we choose two works from
each category of existing methods discussed in Section 2.
One represents the state-of-the-art noise label learning tech-
nique in that category. The other indicates the most represen-
tative work in the corresponding category.2 Table 3 shows all
the works of our selection, and we argue that the selection
of these methods well represents existing research efforts.

For each malware dataset, we randomly reserve 100
samples from each class as our testing dataset and the rest
as our training dataset (see Table 1 and 2). For the PE
dataset, we extract features from each PE sample. Our fea-
ture extraction follows a widely adopted method proposed
in [37] (see Appendix 10.1 for more details). After the
feature extraction, each sample turns into a 1,024 dimension
feature vector. For the Android dataset, we directly use the
feature vectors provided by the original dataset [35]. Note
that the deep neural network (DNN) structure used in the
selected works are designed for image data. We customized
the network structures for malware classification. To ensure
our model performance has a minimal impact from model

2. Note that the most representative work in the category usually is the
work with the highest number of citations.

4

TABLE 5: Noise learning methods on the Android dataset.
Methods Average (%) Class-6 Dnotua (%)

Accuracy Precision F1 Accuracy Precision F1

Vanilla DNN 73.00/0.35 78.65/2.21 69.96/0.54 2.67/5.53 19.79/34.31 4.63/9.52

Coteaching+ 72.73/0.61 75.83/1.76 69.44/0.41 0.00/0.00 0.00/0.00 0.00/0.00
p = 0.895 p = 0.949 p = 0.963 p = 0.835 p = 0.873 p = 0.837

Mentormix 75.52/0.24 78.20/3.12 72.15/0.88 3.75/6.49 20.24/31.24 6.30/10.18
p = 0.001 p = 0.645 p = 0.003 p = 0.767 p = 0.563 p = 0.620

Bootstrap 72.24/0.42 77.41/3.94 68.97/0.70 0.33/0.47 16.67/23.57 0.65/0.92
p = 0.993 p = 0.738 p = 0.999 p = 0.817 p = 0.591 p = 0.816

LRT 72.07/0.49 79.02/3.15 69.15/0.87 2.50/5.59 15.62/34.94 4.31/9.64
p = 0.991 p = 0.416 p = 0.933 p = 0.517 p = 0.574 p = 0.519

Noise-adaption 74.73/0.80 78.33/3.01 71.62/0.82 5.50/7.46 39.17/41.87 9.40/12.63
p = 0.003 p = 0.605 p = 0.004 p = 0.132 p = 0.114 p = 0.138

LIO 72.56/0.41 80.02/2.83 72.78/1.00 3.00/5.86 25.00/38.19 5.24/10.09
p = 0.838 p = 0.233 p = 0.001 p = 0.468 p = 0.417 p = 0.466

GCE 72.67/0.95 78.90/3.98 69.90/0.87 5.00/7.00 32.29/45.70 8.66/12.24
p = 0.710 p = 0.459 p = 0.539 p = 0.314 p = 0.333 p = 0.314

ELR 70.99/0.12 76.46/0.77 67.62/0.25 0.00/0.00 0.00/0.00 0.00/0.00
p = 0.999 p = 0.967 p = 0.999 p = 0.835 p = 0.873 p = 0.837

parameter initialization and data partition, we re-initialize
model parameters and divide the malware dataset based on
the aforementioned criteria whenever training a malware
classifier. In this way, we can compute the average model
accuracy(recall)/precision/F1 scores and their standard devi-
ations. Since our testing datasets are balanced, the reported
metrics are also balanced. Besides, we compute a p-value to
examine if the performance gain is statistically significant.
If p-value is smaller than 0.05 [38], the result is statistically
significant (see Appendix 10.2 for more details). Note that
we carefully tune the hyper-parameters and report the best
performance for each method (see Appendix 10.2).
Experiment Results. Table 4 and 5 shows the performance
of selected noise learning methods on the two datasets, re-
spectively. For the PE dataset, none of the existing methods
perform well in handling noisy labels. To our surprise, the
accuracy of the classifiers is even worse than that of the
classifiers trained on a noisy training set (vanilla method).
On the Android dataset, only MentorMix, Noise-adaption,
and LIO outperform the vanilla method by a small margin.

Looking at each class closely, we find the performance
on the smallest class in each dataset is the worst (the Locky
class in the PE dataset and the Dnotua class in the Android
dataset). As shown in Table 4 and 5, none of the existing
methods outperform the vanilla method. For some methods,
the performance drops significantly compared to the vanilla
method. We hypothesize that the reasons are as follows.
First, both class is the smallest class, approximately 16x
and 300x less than the largest class of the corresponding
dataset. Many prior research works indicate that using a
highly skewed dataset, even without the impact of noisy
labels, the trained classifier is not likely to perform well
on the small class. Second, both class has a high noise
rate (i.e., 54% for Locky and 58.3% for Dnotua). These
high noise rates further reduce the number of clean samples
useful for classifier training. Since none of the noise learning
methods guarantees the selected samples are clean, when
accidentally picking up several incorrectly labeled samples
from the small class, the damage to the corresponding
classification performance would be inevitably amplified.

4. Hypothesis Test

To validate the hypothesis above, we design a controlled
experiment. First, we synthesize four datasets using a public

dataset – BODMAS [39], each of which has a different noise
rate or data imbalance setup. Second, we learn multi-class
classification models on each dataset using the eight noise
learning methods. Finally, we validate our hypothesis by
investigating whether the aforementioned factors impact the
classification performance of the learned classifiers.
Synthesizing datasets. To study the noise rate and data im-
balance’s impact on noisy label learning, we need a dataset.
Its data imbalance and noise rate should be under control.
However, existing datasets have their own data imbalance
and contain no incorrect labels. As such, we synthesize
datasets from the public malware dataset BODMAS [39].
It contains 57,293 samples from 581 families, and each
malware sample is represented as a vector of 2,381 features.
We choose 10 malware families with the largest sample
size. For each family, we randomly select 1,000 samples
for training and 500 samples for testing. We treat our entire
reserved training data corpus as the base dataset.

With the base dataset in hand, we construct 4 synthesized
datasets. First, we remove a certain proportion of samples
from 5 families and thus obtain two datasets with different
data imbalances (20x and 100x). We select 20x to simulate
the imbalance setting in our real-world dataset, which has
an imbalance ratio of roughly 17x) and 100x to simulate
an extreme imbalance setting in a Microsoft PE Malware
dataset [19]. We then randomly change (i.e., label a sample
as a family other than its true family) 30% and 60% labels
for each dataset. 30% simulates setups where the labelers
use multiple AntiVirus vendors to give labels (e.g., MOTIF
with a noise rate of 40%), and 60% simulates setups labeling
data with manual analysis or single AntiVirus vendor [40].
In this way, we obtain 20x-imbalanced and 100x-imbalanced
datasets with 30% and 60% noise rates, respectively. In this
work, we use the aforementioned existing noise learning
methods to train models on these four synthesized datasets
and then evaluate the performance of the models on the re-
served testing data corpus mentioned above. Appendix 10.2
presents more implementation details. To ensure the per-
formance of these baseline methods is not compromised
by hyper-parameters choices, we carefully tuned the critical
hyper-parameters and selected the best hyper-parameters for
our experiment (see Appendix 10.2 for the tuning process).
Hypothesis validation. Table 6 shows the performance of
existing methods in the four settings above. As we can
observe, when the imbalance ratio is 20x or 100x, and the
noise rate is as high as 60%, the models learned through ex-
isting methods cannot even perform better than that learned
directly from the noisy data. It means a high noise rate
and the extreme (or ultra-extreme) data imbalance impose
significant challenges to existing noise learning methods.
This observation well validates our hypothesis in Section 3.

From Table 6, we discover that when the noise rate
is relatively lower (30%), most of the existing methods
remain ineffective under the 20x and 100x data imbalance.
However, some methods, such as MentorMix and Noise-
adaption learning, start to function, demonstrating some
abilities to offset the impact of noisy training data. We
believe the reason behind the functioning roots in the design

5

TABLE 6: The testing performance of existing methods on the synthetic datasets. “overall cls” represents the model’s overall
performance. “rare cls” indicates the model’s performance on minority classes.

Methods
Noise rate 0.3 and imbalance ratio 20x Noise rate 0.3 and imbalance ratio 100x

Overall cls (%) Rare cls (%) Overall cls (%) Rare cls (%)
Accuracy Precision F1 Accuracy Precision F1 Accuracy Precision F1 Accuracy Precision F1

Vanilla DNN 75.55/1.38 82.94/3.78 73.46/0.90 57.89/3.69 85.74/6.65 63.03/1.20 70.83/0.87 76.29/0.85 67.80/1.19 48.45/1.44 79.47/0.62 56.77/0.24

Coteaching+ 74.49/2.56 78.23/1.45 72.79/1.25 56.71/3.08 77.92/2.50 62.09/1.03 69.25/0.92 74.63/3.38 67.02/1.95 45.57/3.68 75.96/7.39 53.85/4.53
p = 0.738 p = 0.951 p = 0.683 p = 0.715 p = 0.952 p = 0.871 p = 0.977 p = 0.863 p = 0.817 p = 0.891 p = 0.834 p = 0.898

MentorMix 77.58/0.70 80.80/1.05 74.15/1.13 62.77/1.14 79.52/1.02 63.85/1.02 72.58/0.56 75.25/0.24 67.51/0.10 48.54/1.06 78.86/0.83 56.73/1.02
p = 0.043 p = 0.715 p = 0.052 p = 0.058 p = 0.893 p = 0.082 p = 0.020 p = 0.998 p = 0.738 p = 0.430 p = 0.975 p = 0.481

Bootstrap 75.17/1.43 78.80/1.05 72.78/1.13 58.58/3.00 77.55/1.79 62.11/2.10 70.30/0.66 76.45/0.74 67.55/1.24 49.24/1.18 79.65/0.56 56.51/1.46
p = 0.624 p = 0.934 p = 0.826 p = 0.398 p = 0.940 p = 0.992 p = 0.970 p = 0.362 p = 0.637 p = 0.947 p = 0.082 p = 0.662

LRT 73.17/2.16 78.41/0.61 72.30/1.11 58.30/3.66 78.25/1.10 62.33/0.88 65.17/5.24 74.18/3.94 64.42/4.93 40.01/8.61 77.63/4.04 51.71/6.40
p = 0.927 p = 0.951 p = 0.928 p = 0.398 p = 0.934 p = 0.776 p = 0.992 p = 0.871 p = 0.923 p = 0.994 p = 0.809 p = 0.935

Noise-adaption 77.75/0.66 80.44/1.06 74.13/1.33 62.50/0.98 79.02/2.68 63.73/1.56 72.56/1.41 75.59/0.81 67.30/1.51 50.81/2.90 79.21/0.57 56.76/0.79
p = 0.016 p = 0.846 p = 0.066 p = 0.028 p = 0.943 p = 0.096 p = 0.006 p = 0.846 p = 0.691 p = 0.075 p = 0.975 p = 0.504

LIO 75.72/1.78 81.19/2.74 72.73/0.75 60.19/1.04 84.40/6.52 63.61/2.44 70.06/2.34 75.12/2.35 65.80/1.12 46.25/5.68 79.65/0.30 52.72/0.28
p = 0.825 p = 0.642 p = 0.883 p = 0.114 p = 0.479 p = 0.238 p = 1.000 p = 0.852 p = 0.992 p = 0.798 p = 0.306 p = 0.987

GCE 76.98/1.49 81.52/3.26 73.68/1.74 59.08/4.09 82.89/5.96 62.67/2.38 70.83/2.21 73.25/7.41 66.94/3.21 47.58/3.32 72.31/14.53 53.49/6.24
p = 0.113 p = 0.594 p = 0.287 p = 0.350 p = 0.614 p = 0.540 p = 0.504 p = 0.793 p = 0.704 p = 0.728 p = 0.836 p = 0.848

ELR 74.28/0.69 84.60/1.20 72.05/1.38 53.58/2.10 92.02/1.57 60.82/1.97 66.84/1.66 65.70/0.13 61.00/0.40 42.33/3.37 59.46/0.57 44.90/0.77
p = 0.953 p = 0.077 p = 0.899 p = 0.982 p = 0.027 p = 0.944 p = 0.998 p = 1.000 p = 0.999 p = 0.987 p = 1.000 p = 1.000

Methods
Noise rate 0.6 and imbalance ratio 20x Noise rate 0.6 and imbalance ratio 100x

Overall cls (%) Rare cls (%) Overall cls (%) Rare cls (%)
Accuracy Precision F1 Accuracy Precision F1 Accuracy Precision F1 Accuracy Precision F1

Vanilla DNN 68.04/1.77 70.38/6.31 63.68/4.12 48.93/4.03 73.16/9.31 53.39/7.05 65.57/0.87 71.67/3.30 61.11/0.89 44.39/1.94 76.67/7.45 51.02/1.56

Coteaching+ 61.20/4.81 58.92/5.03 54.73/4.60 33.64/6.49 55.50/9.97 39.84/8.42 50.85/7.03 37.47/4.82 41.93/4.07 10.37/14.67 16.38/7.34 15.33/6.87
p = 0.993 p = 0.997 p = 0.998 p = 0.998 p = 0.997 p = 0.997 p = 0.997 p = 1.000 p = 0.999 p = 0.998 p = 1.000 p = 1.000

MentorMix 69.11/0.74 75.05/1.05 63.28/1.03 51.40/2.28 77.55/3.79 58.11/2.10 55.28/1.50 76.45/0.74 57.55/1.24 19.96/2.34 77.58/4.01 30.51/3.46
p = 0.129 p = 0.934 p = 0.826 p = 0.376 p = 0.151 p = 0.124 p = 0.998 p = 0.362 p = 0.999 p = 0.999 p = 0.082 p = 0.999

Bootstrap 68.94/1.40 71.12/4.69 64.81/2.92 50.03/5.04 71.35/8.21 55.56/7.42 65.83/1.50 72.73/0.67 60.89/1.10 45.66/2.09 79.95/0.07 50.30/1.21
p = 0.174 p = 0.431 p = 0.328 p = 0.370 p = 0.602 p = 0.346 p = 0.316 p = 0.253 p = 0.669 p = 0.182 p = 0.184 p = 0.784

LRT 64.97/2.70 70.83/2.85 61.18/4.68 48.40/3.06 78.15/1.91 54.61/2.64 55.51/5.83 57.23/6.02 47.04/5.76 26.78/11.11 59.15/10.55 29.60/10.03
p = 0.982 p = 0.453 p = 0.759 p = 0.643 p = 0.168 p = 0.380 p = 0.992 p = 0.993 p = 0.998 p = 0.994 p = 0.962 p = 0.997

Noise-adaption 70.62/3.54 77.15/2.84 66.75/2.11 53.65/7.79 83.70/4.08 58.07/3.34 66.20/1.79 72.04/3.48 62.01/1.18 44.82/2.55 75.80/7.18 53.60/2.67
p = 0.130 p = 0.021 p = 0.141 p = 0.155 p = 0.010 p = 0.146 p = 0.196 p = 0.443 p = 0.120 p = 0.380 p = 0.563 p = 0.101

LIO 68.54/2.97 73.43/2.67 64.63/2.40 48.73/6.64 77.28/3.51 57.39/3.04 52.54/5.26 56.90/7.90 45.92/6.74 24.53/9.29 57.12/15.47 27.23/14.41
p = 0.390 p = 0.167 p = 0.311 p = 0.517 p = 0.171 p = 0.133 p = 1.000 p = 0.997 p = 0.998 p = 0.997 p = 0.980 p = 0.993

GCE 57.38/4.32 53.55/6.63 50.76/6.05 29.01/7.37 45.59/10.18 32.45/7.67 47.15/0.35 27.53/1.75 33.92/1.02 0/0 0/0 0/0
p = 0.996 p = 0.993 p = 0.992 p = 0.997 p = 0.994 p = 0.995 p = 1.000 p = 1.000 p = 1.000 p = 1.000 p = 1.000 p = 1.000

ELR 68.19/1.93 68.62/5.42 62.58/3.58 43.55/4.02 66.42/9.61 48.51/5.95 63.65/0.53 60.18/5.11 58.69/1.41 36.13/1.07 50.00/10.00 40.00/2.46
p = 0.430 p = 0.727 p = 0.719 p = 0.985 p = 0.914 p = 0.917 p = 0.994 p = 0.998 p = 0.999 p = 1.000 p = 0.999 p = 1.000

of both techniques.
MentorMix utilizes a data augmentation mechanism to

fuse some incorrectly labeled training data with relatively
clean training samples and thus improve classification capa-
bility. When the noise rate is low, the data fusing introduces
fewer errors and thus demonstrates better performance even
in the context of data imbalance. However, the augmenta-
tion inevitably amplifies the errors when the noise is high,
making MentorMix futile. For Noise-adaption, it first learns
a model f on the noisy data. The learned model could
predict given samples’ labels (regardless if they are correct
or incorrect). Then, noise-adaption estimates a matrix T
indicating the likelihood of a sample’s correct label being
flipped to an incorrect one. By multiplying f with T−1,
one could obtain the corrected label for data samples. In a
low noise setup, f could be learned accurately. However,
in a high noise setting, the high-noise training dataset is
similar to a dataset with most of its data randomly labeled.
In this situation, a previous study [30] indicates that it is
challenging to learn a highly accurate f , making the noise-
adaption method ineffective.

5. Proposed Method

To offset the impact of the high noise rate and the
data imbalance issues, we propose a new technical method
and name it after MORSE. Technically, MORSE customizes
and extends a state-of-the-art semi-supervised learning tech-
nique. In the following, we first describe the high-level idea

of MORSE. We then detail how we customize and extend
the semi-supervised learning method.

5.1. Design Principle & Technical Overview

As is mentioned in Section 2, the existing noise learning
techniques follow two different methods to handle noise
learning problems from the training data usage perspective.
One is to utilize all the noisy training data to learn models
(e.g., L2RW [5], ELR [9], and MentorMix [6]). The other is
learning models by using only the training data that could be
correctly labeled and discarding the rest. The representative
works include Coteaching [4] and INCV [23].

For the first method, while researchers introduce vari-
ous methods to make incorrectly labeled data carry fewer
weights on training, incorrectly labeled data inevitably dam-
age model updates. With the increase in noise rate, the
model’s performance downgrade would be amplified. For
the second method, model training rules out many noisy
labels. Compared with the first method, noisy labels imposes
minimal impact on learned models. However, when the noise
rate is high and the data imbalance issue occurs, the data
available for training becomes scarce, and the learned model
is challenging to perform well.

In this work, we propose MORSE to address this problem.
MORSE treats possibly correctly labeled data as labeled data
and the rest as unlabeled data. It then utilizes a semi-
supervised learning method to facilitate model learning.
We further augment the semi-supervised learning method

6

with a sample re-weighting mechanism to make the semi-
supervised learning handle the extreme data skewed issue.

Semi-supervised learning is an ML technique falling be-
tween unsupervised and supervised learning. Given a dataset
with the mixture of labeled and unlabeled data, it combines
both labeled and unlabeled data during training. As a result,
it could learn a model with higher model accuracy than
supervised and unsupervised learning approaches.

Using it to learn a model on our designated, labeled
data (i.e., possibly correctly labeled data) and unlabeled data
(i.e., possibly incorrectly labeled data), we can avoid the
drawback of the existing technique. First, some incorrect
labels can be discarded, reducing their impact on model
learning. Second, by treating incorrectly labeled data as
unlabeled data and then introducing them as part of the
data for semi-supervised learning, we avoid ruling out the
majority of incorrectly labeled data for model learning or,
in other words, avoiding having too little available training
data to learn a model. As we will show in Section 6, this
design significantly outperforms the existing methods.

As is mentioned above, in addition to using a semi-
supervised learning method, we also extend it with a sample
re-weighting mechanism. Sample re-weighting [41], [42] is
the state-of-the-art technique recently proposed for dealing
with data imbalance. Technically, it weighs the loss com-
puted for different samples differently based on whether
they belong to the majority of the minority classes. The
re-weighting technique assigns a higher weight to the loss
encountered by the samples associated with minor classes.
In this way, a learning method could handle a class imbal-
ance in the training dataset. As we will show in Section 6, by
integrating this mechanism into a semi-supervised learning
framework, we could further improve the ability to counter-
act incorrect labels. While our proposed method could be
viewed as the combination of semi-supervised learning and
sample re-weighting, the integration of both is not trivial.
There are still many detailed designs needed to be addressed.
For example, how to determine labeled and unlabeled data
in a noisy training set? How to customize a semi-supervised
learning method for malware categorization? How to inte-
grate sample re-weighting into the semi-supervised learning
framework? In the following, we discuss our design in
detail and provide the background knowledge needed for
understanding our proposed method.

5.2. Background of Semi-supervised Learning

As is mentioned above, semi-supervised learning takes
both labeled and unlabeled data for parameter update during
model training. Over the past years, researchers have pro-
posed various semi-supervised learning techniques. In this
work, we choose the state-of-the-art method FixMatch [43],
customizing and extending it for our problem. Compared
with other semi-supervised learning methods, FixMatch
demonstrates better empirical performance and has more
simplified learning framework. In the following, we briefly
introduce how FixMatch performs model training.

Algorithm 1: FixMatch – the state-of-the-art semi-
supervised learning algorithm.

1 Input: labeled dataset X , unlabeled dataset U ,
number of total training epochs K, confidence
threshold τ , unsupervised loss weight λ.

2 Initialization: Initialize the weights Θ for the
model f(·) randomly.

3 for k = 0, 1, 2, ...,K do
4 for iter = 1, 2, ..., num_batches do
5 From X , draw a mini-batch

{(xb, yb) : b ∈ (1, ..., B)}
6 From U , draw a mini-batch

{ub : b ∈ (1, ..., Bµ)}
7 for b = 1, 2, ..., Bµ do
8 qb = f(g(ub);Θ)
9 q̂b = argmax(qb)

10 end
11 Ls =

1
B

∑B
b=1 H(yb, f(g(xb)))

12 Lu = 1
Bµ

∑Bµ

b=1 I(max(qb) >

τ)H(q̂b, f(h(ub)))
13 L = Ls + λLu

14 Update the model’s weights Θ by
minimizing the loss function L

15 end
16 end
17 Output: the well trained model f(·;Θ).

FixMatch is designed to perform semi-supervised learn-
ing in the context of image recognition. Technically, Fix-
Match works as follows. First, it evenly partitions both
the labeled and unlabeled datasets into M mini-batches.
Second, it utilizes an augmentation function g(·) to convert
a batch of the labeled data X⌊ = {(xb, yb) : b ∈ (1, ..., B)}
into their weakly augmented form. As is mentioned above,
FixMatch is designed for the image recognition task. There-
fore, FixMatch defines the weakly augmented sample as the
image sample xb (xb ∈ X⌊) flipped or shifted horizontally
or vertically. With the augmented form of labeled samples
in hand, third, FixMatch utilizes an updated deep learning
model f(·) – or a randomly initialized mode if the algorithm
is in its first iteration – to predict labels for a batch of
unlabeled data {ub : b ∈ (1, ..., Bµ)} and thus turns the
batch of the unlabeled data into a batch of data with pseudo
labels, i.e., U⌊ = {(ub, q̂b) : b ∈ (1, ..., Bµ)}. Here, q̂b
indicates the pseudo label of the sample ub. Mathematically,
it is equal to argmax(qb) representing the index of the
maximum value of the model output qb = f(g(ub)).

With both X⌊ and U⌊ in hand, FixMatch further intro-
duces a loss, Ls+λLu, which is the summation of two loss
terms Ls and Lu weighed by hyper-parameter λ. The first
loss term also called the supervised loss, is established on
the batch of the labeled data X⌊. It is defined as

Ls =
1

B

B∑
b=1

H(yb, f(g(xb))), (1)

7

where H is the cross-entropy loss. By minimizing this loss,
FixMatch ensures that the image flip and shift should not
influence the model’s prediction or, in other words, the
model could be robust against standard image flip-and-shift
manipulation.

Unlike the supervised loss, Sohn et al. name the second
loss term Lu after the unsupervised loss because it is es-
tablished on the batch of the unlabeled data U⌊. FixMatch
defines the unsupervised loss in the following form

Lu =
1

Bµ

Bµ∑
b=1

I(max(qb) > τ)H(q̂b, f(h(ub))). (2)

Here, h(ub) indicates a strongly augmented sample – an
image sample transformed from ub (ub ∈ U⌊) through
brightness adjustment, image rotation etc. By minimizing
this loss, FixMatch could ensure that the model does not
change its prediction even after someone varies an un-
labeled image’s brightness, contrast, scale, etc. It should
be noted that the unsupervised loss also contains a term
I(max(qb) > τ) where I(·) is an indicator function that
outputs 1 if the condition in the parentheses holds; otherwise
0. In the equation, max(qb) takes the maximum value qb

and compares it with a pre-defined threshold τ . It indicates
that not all the unlabeled data in the batch U⌊ are used
for loss computation. The unlabeled data are selected if
their predicted values in one class are above a pre-defined
threshold τ . With this term, FixMatch ensures that it takes an
unlabeled data sample ub into the internal model parameter
update process only if the model’s output to that data sample
(qb = f(g(ub))) is in high confidence.

Algorithm 1 shows the training process that FixMatch
follows. As we can observe, FixMatch repeats the procedure
above iteratively. In each iteration, it selects a batch of
labeled and unlabeled data. Using the model updated in
the previous iteration, FixMatch assigns pseudo labels to
the batch of the unlabeled data, computes the loss, and
updates the model’s internal parameters. We discuss how
we customize and extend this learning algorithm for our
problem in the following.

5.3. Our Proposed Method

To use FixMatch for malware classification, we must ad-
dress three vital technical problems. First, we need to define
labeled and unlabeled data. In our dataset, all the data are
labeled. However, the provided labels are not 100% correct.
As is mentioned above, we need to identify those correctly
labeled data and treat them as our labeled dataset and the
rest as unlabeled data. Second, we need to redefine weak
and strong augmentation. As is described above, FixMatch
mutates image scale, brightness, contrast, etc. The malware
semantic is different from that of images. Therefore, the
augmentation defined in FixMatch cannot be applied to mal-
ware. Third, we need to augment FixMatch with the ability
to handle extreme class imbalance. As is discussed above,
malware data is highly skewed, which plagues existing noisy
label learning methods. While techniques are designed to

Algorithm 2: Proposed learning algorithm. The
customized and extended parts are highlighted.

1 Input: imbalanced noisy training dataset D,
number of total training epochs K, labeled data’s
proportion d, starting re-weighting epoch Td,
confidence threshold τ , unsupervised loss weight
λ, learning rate α.

2 Initialization: Initialize the weights Θ for the
model f(·) by using entire dataset D with only a
few epochs.

3 for k = 0, 1, 2, ...,K do
4 Partitioning the training dataset D into labeled

dataset X and unlabeled dataset U : select the
top d% examples with the least loss values
from each given class and treat them as labeled
data and the rest as unlabeled data.

5 for iter = 1, 2, ..., num_batches do
6 From X , draw a mini-batch

{(xb, yb) : b ∈ (1, ..., B)}
7 From U , draw a mini-batch

{ub : b ∈ (1, ..., Bµ)}
8 for b = 1, 2, ..., Bµ do
9 // Use Eqn. (3) to perform weak

augmentation against ub

10 qb = f(g(ub);Θ)
11 q̂b = argmax(qb)
12 end
13 if k < Td then
14 // Use Eqn. (3) to perform weak

augmentation against xb

15 Ls =
1
B

∑B
b=1 H(yb, f(g(xb)))

16 // Use Eqn. (3) to perform strong
augmentation against ub

17 Lu = 1
Bµ

∑Bµ

b=1 I(max(qb) >

τ)H(q̂b, f(h(ub)))
18 else
19 // Calculate the weight of each training

sample using Eqn. (4)
20 // Use Eqn. (3) to perform weak

augmentation against xb

21 Ls =
1
B

∑B
b=1 wbH(yb, f(g(xb)))

22 // Use Eqn. (3) to perform strong
augmentation against ub

23 Lu1 = 1
Bµ

∑Bµ

b=1 I(max(qb) > τ)

24 Lu = Lu1 + wbH(q̂b, f(h(ub)))
25 end
26 L = Ls + λLu

27 Update the model’s weights Θ by
minimizing the loss function L

28 Optional: decay the learning rate α
29 end
30 end
31 Output: the well trained model f(·;Θ).

8

address data imbalance, it is unclear how to integrate it into
FixMatch’s model learning procedure. Here, we discuss how
we tackle these three technical challenges.
Labeled data selection. We first provide some key no-
tations. Let D = {(xi, yi) : i ∈ (1, ..., N)} be our
training dataset, where xi ∈ Rd is the input feature
and yn ∈ {1, ..., C} is the given label. In each training
epoch, we divide the training dataset into labeled data
X = {(xi, yi) : i ∈ (1, ..., Nl)} and unlabeled data
U = {ui : i ∈ (1, ..., Nu)}, where Nl +Nu = N .

As is discussed in Section 2, the sample selection ap-
proach utilizes the loss value as an indicator to distinguish
correctly labeled data from the other. The samples with
lower loss values are usually the ones with correct labels.
Therefore, in this work, we follow the sample selection
method to determine which samples are more likely to be
correctly labeled and thus should be retained as labeled data.

Specifically, at each epoch, we use the updated model to
compute the cross-entropy loss value for each data sample
in the training set. For each class, we then select the top
d% samples with the least loss values and treat them as the
labeled dataset and the remaining as the unlabeled dataset.
As is shown in Algorithm 2, the labeled and unlabeled data
partition occurs at each training epoch. Note that a decent
model is not available at the first epoch. To perform labeled
and unlabeled data partition, we follow the sample selection
method that employs the entire dataset to pre-train a model
with only a few epochs. We then use the pre-trained model
as the initial model to complete data separation.
Weak & strong augmentation. FixMatch’s augmentation
mechanism cannot be applied. Thus, we redefine the weak
and strong augmentation used in FixMatch. Given a sam-
ple x ∈ Rd, we first generate a mask vector m =
[m1, ...,md]

T ∈ Rd where mj is either 0 or 1 randomly
sampled from a Bernoulli distribution with probability pa.
Second, we augment the malware sample x and obtain its
augmented version x̃ by using the following equation

x̃ = x⊙m+ (1−m)⊙ x̄. (3)

Here, the i-th feature of x̄ is sampled from that feature’s
empirical marginal distribution, which is defined as the
uniform distribution over the values that feature takes on
across the training dataset. For example, given a dataset with
three samples {<1,32,5>, <2,66,9>, <9,99,8>},
the value of the 2-nd feature of x̄ is equal to a value
randomly sampled from 32, 66, and 99. As we can observe
from the equation above, our newly defined augmentation is
to replace some feature values with those in other samples.
Our data augmentation requires only simple operations in
the feature space without making any assumptions about
how those features are extracted. As such, our method could
generalize well to malware features extracted by different
methods or even data in other domains. Since our aug-
mentation method only changes features, the augmented
samples may be wrongly labeled. Our learning algorithm
is designed to be resilient to such wrong labels because
most augmented samples are used as unlabeled data and are
relabeled with pseudo labels during the training. To verify

this, we demonstrate in Appendix 10.7 that our method
achieves a similar result as another one that better preserves
the label correctness.

We use this equation for both weak and strong augmen-
tation. The only difference is that the weak augment takes a
relatively large value for pa whereas the strong augmentation
takes a small value. As such, our weak augmentation brings
about minimal variation to malware samples, but the strong
augmentation causes significant changes.
Sample re-weighting. Sample weighting is commonly
adopted for handling class imbalance in a training set. The
basic idea is to weigh the loss computed for different sam-
ples differently based on whether they belong to the majority
or minority classes. Under this idea, the samples associated
with minor classes could be assigned with a higher weight
to the loss. In this work, we select the state-of-the-art
sample weighting technique – sample re-weighting [41] –
and integrate it into our customized FixMatch method.

The sample re-weighting scheme was introduced by
Google in 2019. Instead of weighting the samples as the
inverse of the class frequency [44] or the square root of
class frequency [45], [46] for the class they belong to,
it introduces a novel framework to measure the effective
number of samples and treat the weight as the inverse of
the effective number of samples.

Given a class yb, the sample re-weighting scheme defines
the effective number of samples as

Enyb
=

1− βnyb

1− β
. (4)

nyb
is the number of samples in class yb, and β ∈ [0, 1) is

a hyperparameter. Using its inverse (i.e., wb = 1
Enyb

), we
can extend the loss shown in Equation (1) and (2) as

Ls =
1

B

B∑
b=1

wbH(yb, f(g(xb)));

Lu =
1

Bµ

Bµ∑
b=1

I(max(qb) > τ)wbH(q̂b, f(h(ub))).

(5)

The sample re-weighting scheme is designed for super-
vised learning. To adapt it to our semi-supervised learning
approach, we further customize the way to compute the
effective sample number. For labeled data, we deem that nyb

is the number of labeled samples belonging to the class yb.
For unlabeled data, we deem that nyb

indicates the number
of samples, the pseudo label of which belongs to the class
yb. Recall that, in Equation (2), we compute the loss using an
unlabeled sample if its prediction qb is above a threshold τ .
As such, when counting nyb

for unlabeled data, we consider
only the unlabeled samples with the predictions above τ .

Intuition suggests that after replacing the loss of Fix-
Match with the ones above and then customizing FixMatch
as discussed above, we could expect to learn a model that
addresses the issues of data imbalance and high noise rate.
However, recent research [42] discovers that deferring re-
weighting until after the initial stage allows the model to
learn an initial representation while avoiding some of the

9

complications associated with re-weighting. As a result, we
further customize FixMatch as follows (See Algorithm 2).
First, before annealing the learning rate, we train a model
guided by Equation (5) without introducing the re-weighting
strategy, i.e., setting the wb = 1 for both labeled and
unlabeled samples. Second, we apply the re-weighting into
model training with a lower learning rate.

6. Evaluation of Proposed Method

We evaluate the effectiveness and efficiency of our
proposed noise learning method on multi-class malware
classification tasks by using the datasets in Section 3 and 4.

6.1. Experiment Setup

Since we use the datasets introduced in Section 3 and 4
to assess our proposed methods, we can compare the perfor-
mance of our proposed method with that of existing noise
learning methods. To do it, we ensure the network structure,
optimizer, and batch size used for both our approach and
the existing methods are consistent. Specifically, we use
a 3-layer Multi-layer Perceptron (MLP) network. Both our
proposed method and existing techniques can be applied to
DNN with different structures. To adapt them for malware
data, we use a MLP rather than CNN which is mostly used
for images. We train it using Adam optimizer with a learning
rate of 0.001, a weight decay of 0.0002, and a batch size
of 128. Again, to ensure model parameter initialization and
data partition has minimal impact on a malware classifier’s
performance, we vary these factors and compute the average
model performance. As for the hyper-parameters in our
method, we set their values to the values demonstrating the
optimal overall performance (see Appendix 10.2). Finally,
we design an experiment to study how the percentage of
labeled data affects our method’s overall performance. Based
on the experiment result, we set the d (i.e., the percentage
of labeled data) as 15 across all the datasets. It should be
noted that we train the corresponding malware classifiers on
the same machine – a server with 4 NVIDIA RTX A6000
GPUs for all the learning algorithms. All the experiment
results are observed from the same computation resource.

6.2. Experiment Design

We design our experiments from two perspectives.
First, we quantify the overall performance of the proposed
method. Second, we investigate how the critical individual
factors (e.g., sample re-weighting, selected labeled data)
play a role in offsetting noisy data’s impact on overall
malware categorization. Below, we describe the detailed
experiment designs.
Experiment I: Effectiveness & Efficiency. Here, we want
to examine if MORSE outperforms existing methods and
offset the incorrectly labeled data’s impact on malware
categorization. As a result, we treat the aforementioned
eight representative noise learning methods as our baseline

approaches and compare their performance with MORSE on
the above datasets. Note that we also compare MORSE with
some widely used traditional ML methods and show the
results in Appendix 10.3.
Experiment II: Sample re-weighting. Recall that we intro-
duce a sample re-weighting scheme to deal with the extreme
data imbalance problem. To understand the contribution of
the sample re-weighting to MORSE, we design an experiment
in which we remove the sample re-weighting from our
approach, run the revised learning method, and compare
the performance of our modified method with our original
approach. In Appendix 10.4, we further add the sample re-
weighting to baseline and evaluate their performance.
Experiment III: Labeled data’s proportion. Recall that
our proposed method divides the entire dataset into labeled
and unlabeled subsets. When determining labeled data sam-
ples, we select the top d% of samples with the minimal
loss values from each given class. To study d’s impact
on the performance of our proposed method, we design
an experiment that varies d’s value range from 5 to 95
by increasing 10 each time. In our evaluation, we use the
synthetic datasets for this study.
Experiment IV: Different network structures. Recall that
we use a MLP rather than CNN to process malware feature
vectors. To demonstrate our design is orthogonal to network
structures, we replace the MLP with CNN and record the
performance on two real-world datasets in Section 3.

6.3. Experiment Results

Effectiveness on synthetic dataset. Table 7 shows the per-
formance of the model learned from our proposed method.
As we can observe, our proposed approach demonstrates the
capability in offsetting the impact of the incorrectly labeled
data. Comparing with the results shown in Table 6, we can
also discover that our method demonstrates a better ability
to improve the model’s classification performance than any
existing methods. For example, when synthetic noise reaches
60% and data imbalance is 100x, the model learned from our
method shows a 72.05% malware classification accuracy,
which is a 6.48% improvement over vanilla (i.e., directly
learning a model from the noisy dataset). On the contrary,
the models learned from all other approaches demonstrate
the performance even lower than that from the noisy dataset.
Effectiveness on real-world datasets. Besides the perfor-
mance improvement on the synthetic datasets, MORSE also
demonstrates the ability to improve model accuracy on the
real-world malware datasets. Comparing the results shown
in Table 9 with those in Table 5, our technique outperforms
the vanilla method and other noisy learning methods on the
Android dataset. Under the confidence interval of 0.05, it
achieves a 6.76% improvement in classification accuracy. On
the PE dataset, MORSE is the only approach that outperforms
the vanilla method (with a 1.14% improvement). We argue
this improvement is significant because even if we train
our network directly on the clean version of this real-world
dataset, we could merely obtain about 2% accuracy improve-
ment over the vanilla method. It indicates that MORSE could

10

TABLE 7: The testing performance of the models learned from MORSE and Vanilla method on the synthetic dataset.

Methods
Noise rate 0.3 and imbalance ratio 20x Noise rate 0.3 and imbalance ratio 100x

Overall cls (%) Rare cls (%) Overall cls (%) Rare cls (%)
Accuracy Precision F1 Accuracy Precision F1 Accuracy Precision F1 Accuracy Precision F1

Vanilla DNN 75.55/1.38 82.94/3.78 73.46/0.90 57.89/3.69 85.74/6.65 63.03/1.20 70.83/0.87 76.29/0.85 67.80/1.19 48.45/1.44 79.47/0.62 56.77/0.24
Vanilla DNN

w re-weighting
78.87/0.30 82.64/0.88 77.71/0.44 68.59/2.29 80.75/2.44 69.63/1.03 72.85/1.79 75.97/0.98 69.86/1.74 56.81/4.63 76.44/1.89 60.88/2.64
p = 0.000 p = 0.335 p = 0.000 p = 0.000 p = 0.878 p = 0.000 p = 0.083 p = 0.656 p = 0.049 p = 0.009 p = 0.988 p = 0.008

Our method
w/o re-weighting

79.64/0.83 87.81/1.68 77.61/1.01 64.85/2.62 94.46/2.31 70.00/2.70 71.73/2.24 73.38/4.94 65.87/3.16 46.84/3.98 72.99/9.19 50.54/5.68
p = 0.000 p = 0.011 p = 0.000 p = 0.001 p = 0.009 p = 0.000 p = 0.138 p = 0.900 p = 0.891 p = 0.752 p = 0.917 p = 0.972
79.73/1.85 87.11/1.82 79.11/1.30 67.47/3.17 88.45/4.63 70.76/3.42 73.47/0.91 78.97/2.11 70.42/1.02 54.40/7.97 82.59/3.85 62.30/5.55Our method
p = 0.008 p = 0.039 p = 0.000 p = 0.006 p = 0.182 p = 0.002 p = 0.001 p = 0.027 p = 0.007 p = 0.092 p = 0.071 p = 0.040

Methods
Noise rate 0.6 and imbalance ratio 20x Noise rate 0.6 and imbalance ratio 100x

Overall cls (%) Rare cls (%) Overall cls (%) Rare cls (%)
Accuracy Precision F1 Accuracy Precision F1 Accuracy Precision F1 Accuracy Precision F1

Vanilla DNN 68.04/1.77 70.38/6.31 63.68/4.12 48.93/4.03 73.16/9.31 53.39/7.05 65.57/0.87 71.67/3.30 61.11/0.89 44.39/1.94 76.67/7.45 51.02/1.56
Vanilla DNN

w re-weighting
68.01/1.52 70.65/2.95 65.52/2.68 58.50/2.59 67.70/5.18 57.18/3.31 66.84/2.36 67.22/2.28 64.34/2.33 55.85/4.36 61.15/4.13 56.36/4.29
p = 0.464 p = 0.448 p = 0.184 p = 0.011 p = 0.960 p = 0.106 p = 0.137 p = 0.979 p = 0.021 p = 0.001 p = 0.996 p = 0.037

Our method
w/o re-weighting

72.82/2.86 77.24/1.69 69.42/2.61 54.09/3.96 81.00/1.34 60.26/2.85 64.85/4.83 65.85/5.03 58.93/2.81 38.65/9.12 66.67/8.43 42.38/6.12
p = 0.012 p = 0.050 p = 0.038 p = 0.051 p = 0.061 p = 0.041 p = 0.624 p = 0.927 p = 0.988 p = 0.895 p = 0.898 p = 0.987
76.20/0.59 79.45/1.69 72.90/1.17 61.21/1.00 80.45/0.99 64.25/0.20 72.05/1.94 74.97/3.41 68.03/1.01 53.82/4.98 76.60/7.48 58.00/3.80Our method
p = 0.000 p = 0.016 p = 0.003 p = 0.000 p = 0.066 p = 0.009 p = 0.000 p = 0.005 p = 0.000 p = 0.005 p = 0.891 p = 0.003

TABLE 8: MORSE vs. Vanilla method on the PE dataset.
Methods Average (%) Class-11 (%)

Accuracy Precision F1 Accuracy Precision F1

Vanilla DNN 93.08/0.25 93.65/0.51 92.57/0.36 44.33/3.78 96.34/4.22 60.48/3.22
Vanilla DNN

w re-weighting
93.82/0.29 94.01/0.30 93.50/0.34 55.67/2.98 89.71/2.30 68.61/1.70
p = 0.003 p = 0.102 p = 0.001 p = 0.001 p = 0.974 p = 0.001

Our method
w/o re-weighting

92.50/0.18 93.35/0.28 91.33/0.58 36.50/2.75 99.51/1.10 51.07/5.05
p = 0.980 p = 0.924 p = 0.992 p = 0.995 p = 0.089 p = 0.979
94.15/0.43 94.14/0.57 93.91/0.67 65.33/4.20 90.18/2.08 76.74/1.22Our method
p = 0.003 p = 0.061 p = 0.000 p = 0.000 p = 0.984 p = 0.000

TABLE 9: MORSE vs. Vanilla on the Android dataset.
Methods Average (%) Class-6 (%)

Accuracy Precision F1 Accuracy Precision F1

Vanilla DNN 73.00/0.35 78.65/2.21 69.96/0.54 2.67/5.53 19.79/34.31 4.63/9.52
Vanilla DNN

w re-weighting
77.32/1.72 82.20/3.73 75.68/2.58 20.83/7.99 80.39/9.40 32.03/8.99
p = 0.002 p = 0.049 p = 0.003 p = 0.007 p = 0.003 p = 0.005

Our method
w/o re-weighting

74.58/0.86 77.33/4.47 71.00/0.96 5.17/7.31 32.35/45.79 8.91/12.60
p = 0.004 p = 0.691 p = 0.015 p = 0.309 p = 0.347 p = 0.311
79.76/1.02 80.37/1.99 78.72/1.22 27.67/8.01 58.54/18.90 35.80/7.88Our method
p = 0.000 p = 0.088 p = 0.000 p = 0.000 p = 0.039 p = 0.000

learn a model on a noisy dataset with accuracy, almost the
same as learning on a clean dataset. Recall that existing
methods cannot perform well in the smallest class where the
high noise rate and the data imbalance are extreme. Here,
we, therefore, closely look at the performance of MORSE on
the smallest class in both datasets. We discover that MORSE
significantly improves the model’s accuracy on the smallest
class (Table 9 class-6 and Table 8 class-11). This result
further validates the effectiveness of MORSE in handling
high noise and extreme data skewness.
Effectiveness of MORSE on clean datasets. Table 10 shows
the performance of MORSE and the vanilla method on
the clean version of our real-world datasets and synthetic
datasets. As shown in the table, MORSE also outperforms
the vanilla method on these clean datasets, verifying the
effectiveness of our designs on clean and imbalance datasets.
Efficiency comparison. From Table 11, we can observe
that the average runtime of our method is about 3.7 times
slower than the vanilla method (2.45 sec vs. 0.65 sec).
Compared to existing noise learning methods, our method
is also relatively less computationally efficient. The reason
behind this low efficiency comes from two aspects. First,
as we mentioned in Section 5, MORSE needs to divide the
entire training dataset into labeled and unlabeled subsets at
each training epoch. This dataset partition requires comput-
ing training samples’ loss values, which introduces more
computations. Second, our method introduces a more so-
phisticated loss function than other approaches. Optimizing
this loss requires more computation resources. However, we

believe that the overhead that MORSE introduces is accept-
able not only because it brings significant improvement in
model accuracy but, more importantly, the model training is
an offline process. Once a malware classification model is
trained and deployed, security professionals do not need to
update their model constantly.
With & without sample re-weighting. Table 7, 8 and 9
show the performance of the vanilla method and MORSE
with/without the sample re-weighting mechanism. As we
can first observe from the tables, while removing the sample
re-weighting from MORSE, our customization to FixMatch
still outperforms the vanilla method, when the data skewness
is extreme but not ultra-extreme (e.g., 72.82% vs. 68.04%,
when the noise rate is 60% and data imbalance is 20x).
This effect is because our customization allows the learning
algorithm to treat most of the incorrectly labeled data as
unlabeled data, which minimizes their negative impact on
model learning. However, This result also shows that that
our method sometime fails to offset noisy data’s impact
on model learning without sample re-weighting, especially
when the data imbalance is high (e.g., synthesize datasets
with imbalance ratio 100x). It indicates that the sample re-
weighting scheme is necessary for our problem.

From Table 7, 8 and 9, we can also observe that even
with the sample re-weighting method, the vanilla method
still cannot outperform MORSE, verifying the necessity of
our choice of semi-supervised learning framework and other
customized designs. In Appendix 10.4, we apply the sample
re-weighting method to our selected noise learning methods
and demonstrate that even augmented with the sample re-
weighting, these methods still perform worse than MORSE,
further confirming the necessity of our other designs.
Hyper-parameter sensitivity analysis. Figure 2 shows how
the percentage of labeled data d impacts the malware clas-
sifier’s performance. As we can observe, the performance is
relatively robust to d to some extent. When the value of d is
below a threshold (i.e., 35 in the noise rate 0.6) but not too
small (i.e., larger than 5 in this setting), the classification
accuracy remains relatively consistent. We note that the
classification accuracy significantly decreases after we set
the value of d over the threshold. It indicates that when the
noise rate is high (60%) and we select more than 35% data
as labeled data, more incorrectly labeled data would be acci-

11

TABLE 10: The performance of MORSE and vanilla method on clean datasets. "Real-PE," "Real-Android," "Syn-imb-20x"
and "Syn-imb-100x" refers to PE dataset, Android dataset, synthetic datasets with the imbalance ratio of 20x and 100x,
respectively.

Methods Real-PE (%) Real-Android (%) Syn-imb-20x (%) Syn-imb-100x (%)
Accuracy Precision F1 Accuracy Precision F1 Accuracy Precision F1 Accuracy Precision F1

Vanilla DNN 95.01/0.16 96.06/0.19 94.93/0.19 80.04/0.25 87.66/0.37 79.39/0.20 77.49/0.93 79.86/0.77 74.49/0.94 73.69/0.36 78.09/0.24 70.32/0.31
95.22/0.12 95.84/0.13 95.12/0.13 82.63/2.23 85.25/0.84 82.36/2.05 80.52/1.12 87.81/1.72 78.20/0.86 77.62/2.06 83.07/1.38 75.51/2.45Our method
p = 0.018 p = 0.954 p = 0.032 p = 0.026 p = 0.999 p = 0.012 p = 0.000 p = 0.000 p = 0.000 p = 0.006 p = 0.000 p = 0.003

TABLE 11: The running time comparison on the synthetic
dataset with noise-ratio 0.6 and 20x data imbalance.

Methods Run time per epoch(s) Methods Run time per epoch(s)
Vanilla DNN 0.65 LRT 2.13
Coteaching+ 2.11 LIO 1.00
MentorMix 0.94 GCE 0.67
Bootstrap 0.71 ELR 1.12

Noise-adaption 1.30 Our method 2.45

TABLE 12: The testing performance of MORSE and vanilla
method using a CNN on the real-world datasets.

Methods Real-PE (%) Real-Android (%)
Accuracy Precision F1 Accuracy Precision F1

Vanilla CNN 92.38/0.24 93.28/0.48 91.58/0.31 71.23/1.22 82.07/4.24 68.66/1.70
93.10/0.23 93.08/0.25 92.80/0.30 75.14/0.94 75.85/1.06 74.21/1.19Our method CNN
p = 0.002 p = 0.774 p = 0.000 p = 0.000 p = 0.991 p = 0.000

dentally treated as clean data and thus negatively influence
the model learning. As a result, considering the malware
dataset might be in a high noise rate, we conservatively set
a relatively low value for d (i.e., 15 for all tasks).
Generalizability across different network structure. Ta-
ble 12 shows the results of our method with CNN. First,
compared with the results in Table 8 and 9, replacing MLP
with CNN causes a performance drop, verifying the neces-
sity of customizing the network structure for malware data.
Second, Table 12 shows that MORSE outperforms the vanilla
method with this CNN network, showing the effectiveness
of our designs on different DNN structures.

7. Other Related Work

Semi-supervised learning. As is mentioned in Section 5,
we customize and extend the state-of-art semi-supervised
learning method – FixMatch – to handle our problem. In
addition to FixMatch, there are many other semi-supervised
learning approaches. For example, pseudo-labeling meth-
ods [47], [48], [49] use labeled data to predict the unlabeled
data’s labels and then train the model in a supervised fashion
with the combination of labeled and selected pseudo-labeled
data. Consistency regularization methods [50], [51], [52]
encourage the model to produce similar predictions for the
perturbed version of the unlabeled data. Current state-of-
the-art semi-supervised learning methods [43], [53] combine
these two techniques and produce improved pseudo labels.
However, none of the above semi-supervised learning meth-
ods are designed to handle the class imbalance problem.
Under the extreme data skewness setup, the quality of
pseudo labels would be largely impacted by the majority
class. In this work, we augment FixMatch with the ability
to counteract the impact of data imbalance.
Class-imbalanced supervised learning. There is a large
body of research on imbalanced data learning. Classical
methods focus on designing re-sampling strategies [54],
[55], [56], which over-sample the minority classes and

 0 20 40 60 80 100

 82

75

68

Pecentage of labeled data (d)

Te
st

 A
cc

ur
ac

y
(%

)

Imb-20x Imb-100x

(a) Dataset with noise-rate 0.3.

 0 20 40 60 80 100

 78

69

60

Pecentage of labeled data (d)

Te
st

 A
cc

ur
ac

y
(%

)

Imb-20x Imb-100x

(b) Dataset with noise-rate 0.6.
Figure 2: The test accuracy of the model learned from our
method with d being set up with different values. Note that
hyper-parameter d indicates percentage of data samples that
MORSE selects as labeled data. “Imb-20x” and “Imb-100x”
indicate the 20x and 100x data imbalance, respectively.

under-sample the majority classes. In addition, re-weighting
schemes [57], [44], [58] are proposed to adjust the weights
during training for different classes or even different sam-
ples. Apart from classical methods, another line of re-
search [42], [41], [59] develops a new form of loss functions
to handle the imbalance problem. Besides loss function
re-design, some works [60], [61] aim to transfer knowl-
edge from majority classes to minority classes. A recent
work [62] decouples the learning of representation and
classifier. However, all of the methods above assume the
training data is all correctly labeled, and their performance
is largely unknown in the noisy settings.
Malware detection and classification. Machine learning
has been widely used in malware detection [63], [64], [65],
[66], [67], [68], [69], [70], [18], [71] and malware family
attribution [1], [2], [72] in both academic and industry envi-
ronments. Among these research works, most assume that all
sample labels are correct. To the best of our knowledge, the
works [22], [73] are the only two works exploring malware
identification against incorrect labels. 3

[22] cannot be used to handle malware classification in
the real world. First, this work is designed to handle only
binary but not multi-class malware classification. Specifi-
cally, this method corrects wrong labels via flipping, which
is applicable only to binary classification. This work does
not provide a mechanism for label correction in multi-class
setups and thus cannot be generalized to those settings.
Second, as is mentioned in Section 3, real-world malware
dataset contains high noise and suffers from data imbalance
issues. However, the work [22] is designed for synthetic
malware datasets in which the noise rate is relatively low,
and the data imbalance issues do not exist. In this work,
we cannot compare our work with [22], particularly in the
experiment settings mentioned above. Therefore, we set up

3. [71] proposed a malware detection method to combat concept drifts.
This work studied the impact of noise labels on its method but did not
provide a method to handle noisy labels.

12

a binary classification task for this comparison (see Ap-
pendix 10.5). [73] handles malware categorization under in-
accurately assigned labels. Using the combination of cluster-
ing algorithms, this method clusters malware samples rather
than predicting their labels. As such, it needs post-clustering
manual efforts to align these clusters with “real” labels.
MORSE well complements existing works. It augments semi-
supervised learning with the sample re-weighting scheme,
allowing security analysts to solve multi-class classification
problems under high-noise and imbalanced settings.

Besides designing better ML models, another way to
alleviate the impact of noisy labels upon classifiers is to
correct label noises, or in other words, assign malware with
more accurate labels [74], [75]. Relabeling and MORSE work
in different stages of the learning pipeline (i.e., labeling
and modeling). They are orthogonal and can be combined.
Recall that we show that MORSE has a better performance
on clean datasets than noisy datasets in Section 6 This result
shows that high-quality labels could indeed improve MORSE.
Since the optimal performance for relabeling is to recover
clean labels, this result also verifies that relabeling methods
could be combined with MORSE and give a better result.

8. Discussion & Future Work

Adversarial attacks. Recent research shown that an attacker
could manipulate a malware sample and thus generate an ad-
versarial sample capable of deceiving the malware classifier
(e.g., [76], [77]). Like all other ML algorithms, MORSE
could also be vulnerable to adversarial attacks. However,
we believe building adversary resistance for malware clas-
sifiers is orthogonal to our work. Existing approaches to
robustifying a learning model could potentially be applied
to our proposed method. For example, we could combine
the adversarial training technique [78] with our method to
improve a malware classifier’s robustness against adversarial
examples. This paper leaves the evaluation and implemen-
tation of MORSE’s adversarial robustness as future work.
Label poisoning attacks. Going beyond handling noisy
labels, we argue that MORSE could naturally counteract
label poisoning attacks [79]. In a label poisoning attack,
an adversary flips the training labels and thus influences
the performance of the learned classifier. Recall that our
method could treat incorrectly labeled samples as unlabeled
samples. Using a customized, extended semi-supervised
learning method, we could naturally minimize the impact
of manipulated training labels. As a result, label poisoning
attacks are not likely effective to MORSE. To verify this
argument, we show the robustness of MORSE against an
existing attack [79] in Appendix 10.6.
Combating concept drifts. MORSE is not designed to han-
dle concept drift. As shown in Appendix 10.8, concept drifts
have a negative impact on MORSE. Note that MORSE is still
useful even with concept drifts. To train a malware classifier,
one needs to first collect an initial training dataset. This
training set contains the samples prior to the current time
stamps and thus typically does not contain too many concept
drifts. With the training set by hand, MORSE provides a

useful and practical solution for training a decent classifier.
Once the classifier is deployed and new testing samples
are continuously being received, these samples can contain
concept drift. To address concept drift, we could combine
the existing methods [18], [80] to detect drifts, relabel them,
and update the MORSE’s classifier periodically.
Data augmentation and sample re-weighting. As a de-
fender, we mainly consider the feature space rather than
problem space [81] because every input needs to be trans-
formed into the feature space before feeding into the model.
As long as our augmentation covers the feature space, it also
covers the valid malware in the problem space and thus
will maintain the performance of trained classifiers on real
malware data. As such, we do not require the augmented
sample to be valid malware. It is more of the attacker’s
concern to maintain the functionality of perturbed malware.
Regarding the sample re-weighting method, we selected
the state-of-art method [41] that performs the best in our
evaluation. Our future work will investigate the efficacy of
other re-weighting methods (e.g., [82], [24]).
Other future works. First, we will evaluate larger datasets
(e.g., AndroZoo [83]) and more complicated DNN archi-
tectures (e.g., Transformer [84]). Second, to handle benign
samples, we could build a two-stage/hierarchical model with
two MORSE classifiers, where the first classifier detects ma-
licious samples, and the second one identifies the malware
families. Finally, to generalize MORSE to other applications,
we need two additional effort. (1) Some technical customiza-
tion might be necessary. For example, when performing data
augmentation using our proposed technique, we may need
to re-design the weak and strong data augmentation methods
based on the semantics of the specific applications. (2) We
need to design a decent experiment to gather datasets to re-
flect the real-world noise on the corresponding applications.

9. Conclusion

A real-world malware dataset can be highly imbalanced
and contains many incorrect labels. As such, it is chal-
lenging for security analysts to learn an accurate malware
classifier using a typical supervised learning method on
such datasets. Using and extending semi-supervised learning
techniques, we can minimize and even offset the impact
of incorrect labels. While previous research also proposed
many techniques to offset the impact of incorrect labels.
However, when the noise rate is high, and data imbalance is
extreme, existing methods become futile. On the contrary,
our method consistently shows higher malware classification
accuracy. With this discovery, we safely conclude that a
semi-supervised learning framework could be a practical,
effective approach to handling noise learning problems.

Acknowledgments

We thank the anonymous reviewers for their helpful
comments. This project was supported in part by NSF grant
2225234, 2225225, by the Amazon Research Award.

13

References

[1] M. Ahmadi, D. Ulyanov, S. Semenov, M. Trofimov, and G. Giacinto,
“Novel feature extraction, selection and fusion for effective malware
family classification,” in CODASPY, 2016.

[2] T. Chakraborty, F. Pierazzi, and V. Subrahmanian, “Ec2: Ensemble
clustering and classification for predicting android malware families,”
IEEE Transactions on Dependable and Secure Computing, 2017.

[3] X. Zhang, Y. Zhang, M. Zhong, D. Ding, Y. Cao, Y. Zhang, M. Zhang,
and M. Yang, “Enhancing state-of-the-art classifiers with api seman-
tics to detect evolved android malware,” in CCS, 2020.

[4] B. Han, Q. Yao, X. Yu, G. Niu, M. Xu, W. Hu, I. Tsang, and
M. Sugiyama, “Co-teaching: Robust training of deep neural networks
with extremely noisy labels,” in NeurIPS, 2018.

[5] M. Ren, W. Zeng, B. Yang, and R. Urtasun, “Learning to reweight
examples for robust deep learning,” in ICML, 2018.

[6] L. Jiang, D. Huang, M. Liu, and W. Yang, “Beyond synthetic noise:
Deep learning on controlled noisy labels,” in ICML, 2020.

[7] E. Arazo, D. Ortego, P. Albert et al., “Unsupervised label noise
modeling and loss correction,” in ICML, 2019.

[8] Z. Zhang and M. Sabuncu, “Generalized cross entropy loss for
training neural networks with noisy labels,” in NeurIPS, 2018.

[9] S. Liu, J. Niles-Weed, N. Razavian, and C. Fernandez-Granda, “Early-
learning regularization prevents memorization of noisy labels,” in
NeurIPS, 2020.

[10] J. Goldberger and E. Ben-Reuven, “Training deep neural-networks
using a noise adaptation layer,” in ICLR, 2016.

[11] Y. Yao, T. Liu, B. Han, M. Gong, J. Deng, G. Niu, and M. Sugiyama,
“Dual t: Reducing estimation error for transition matrix in label-noise
learning,” in NeurIPS, 2020.

[12] X. Yu, B. Han, J. Yao et al., “How does disagreement help general-
ization against label corruption?” in ICML, 2019.

[13] Y. Zhang, G. Niu, and M. Sugiyama, “Learning noise transition matrix
from only noisy labels via total variation regularization,” in ICML,
2021.

[14] D. Hendrycks, M. Mazeika, D. Wilson, and K. Gimpel, “Using trusted
data to train deep networks on labels corrupted by severe noise,” in
NeurIPS, 2018.

[15] X. Xia, T. Liu, B. Han, N. Wang, M. Gong, H. Liu, G. Niu, D. Tao,
and M. Sugiyama, “Part-dependent label noise: Towards instance-
dependent label noise,” in NeurIPS, 2020.

[16] A. J. Bekker and J. Goldberger, “Training deep neural-networks based
on unreliable labels,” in ICASSP, 2016.

[17] E. Fonseca, M. Plakal, D. P. Ellis et al., “Learning sound event
classifiers from web audio with noisy labels,” in ICASSP, 2019.

[18] F. Pendlebury, F. Pierazzi, R. Jordaney, J. Kinder, and L. Cavallaro,
“{TESSERACT}: Eliminating experimental bias in malware classifi-
cation across space and time,” in USENIX Security Symposium, 2019.

[19] R. Ronen, M. Radu, C. Feuerstein, E. Yom-Tov, and M. Ah-
madi, “Microsoft malware classification challenge,” arXiv preprint
arXiv:1802.10135, 2018.

[20] S. Zhu, J. Shi, L. Yang, B. Qin, Z. Zhang, L. Song, and G. Wang,
“Measuring and modeling the label dynamics of online {Anti-
Malware} engines,” in USENIX Security Symposium, 2020.

[21] R. J. Joyce, D. Amlani, C. Nicholas, and E. Raff, “Motif: A large
malware reference dataset with ground truth family labels,” arXiv
preprint arXiv:2111.15031, 2021.

[22] J. Xu, Y. Li, and R. H. Deng, “Differential training: A generic
framework to reduce label noises for android malware detection,”
in NDSS, 2021.

[23] Y. Shen and S. Sanghavi, “Learning with bad training data via
iterative trimmed loss minimization,” in ICML, 2019.

[24] J. Shu, Q. Xie, L. Yi, Q. Zhao, S. Zhou, Z. Xu, and D. Meng, “Meta-
weight-net: Learning an explicit mapping for sample weighting,” in
NeurIPS, 2019.

[25] L. Jiang, Z. Zhou, T. Leung, L.-J. Li, and L. Fei-Fei, “Mentornet:
Learning data-driven curriculum for very deep neural networks on
corrupted labels,” in ICML, 2018.

[26] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Be-
yond empirical risk minimization,” arXiv preprint arXiv:1710.09412,
2017.

[27] S. Reed, H. Lee, D. Anguelov, C. Szegedy, D. Erhan, and A. Rabi-
novich, “Training deep neural networks on noisy labels with boot-
strapping,” arXiv preprint arXiv:1412.6596, 2014.

[28] S. Zheng, P. Wu, A. Goswami, M. Goswami, D. Metaxas, and
C. Chen, “Error-bounded correction of noisy labels,” in ICML, 2020.

[29] X. Ma, H. Huang, Y. Wang, S. Romano, S. Erfani, and J. Bailey,
“Normalized loss functions for learning with noisy labels,” in ICML,
2020.

[30] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Under-
standing learning (still) requires rethinking generalization,” Commu-
nications of the ACM, 2021.

[31] D. Arpit, S. Jastrzębski, N. Ballas, D. Krueger, E. Bengio, M. S.
Kanwal, T. Maharaj, A. Fischer, A. Courville, Y. Bengio et al., “A
closer look at memorization in deep networks,” in ICML, 2017.

[32] X. Xia, T. Liu, N. Wang, B. Han, C. Gong, G. Niu, and M. Sugiyama,
“Are anchor points really indispensable in label-noise learning?” in
NeurIPS, 2019.

[33] S. Wu, X. Xia, T. Liu, B. Han, M. Gong, N. Wang, H. Liu, and
G. Niu, “Class2simi: A noise reduction perspective on learning with
noisy labels,” in ICML, 2021.

[34] VirusTotal, “Virustotal,” https://www.virustotal.com/, 2022.

[35] T. C. Miranda, P.-F. Gimenez, J.-F. Lalande, V. V. T. Tong, and
P. Wilke, “Debiasing android malware datasets: How can i trust your
results if your dataset is biased?” IEEE Transactions on Information
Forensics and Security, 2022.

[36] M. Chandramohan, H. B. K. Tan, and L. K. Shar, “Scalable malware
clustering through coarse-grained behavior modeling,” in FSE, 2012.

[37] J. Saxe and K. Berlin, “Deep neural network based malware detection
using two dimensional binary program features,” in MALWARE, 2015.

[38] R. V. Hogg, E. A. Tanis, and D. L. Zimmerman, Probability and
statistical inference. Pearson/Prentice Hall Upper Saddle River, NJ,
USA:, 2010.

[39] L. Yang, A. Ciptadi, I. Laziuk, A. Ahmadzadeh, and G. Wang,
“Bodmas: An open dataset for learning based temporal analysis of
pe malware,” in S&P Workshop, 2021.

[40] E. B. Karbab, M. Debbabi, A. Derhab, and D. Mouheb, “Maldozer:
Automatic framework for android malware detection using deep
learning,” Digital Investigation, 2018.

[41] Y. Cui, M. Jia, T.-Y. Lin, Y. Song, and S. Belongie, “Class-balanced
loss based on effective number of samples,” in CVPR, 2019.

[42] K. Cao, C. Wei, A. Gaidon, N. Arechiga, and T. Ma, “Learning
imbalanced datasets with label-distribution-aware margin loss,” in
NeurIPS, 2019.

[43] K. Sohn, D. Berthelot, N. Carlini, Z. Zhang, H. Zhang, C. A. Raffel,
E. D. Cubuk, A. Kurakin, and C.-L. Li, “Fixmatch: Simplifying semi-
supervised learning with consistency and confidence,” in NeurIPS,
2020.

[44] C. Huang, Y. Li, C. C. Loy, and X. Tang, “Learning deep represen-
tation for imbalanced classification,” in CVPR, 2016.

14

https://www.virustotal.com/

[45] D. Mahajan, R. Girshick, V. Ramanathan, K. He, M. Paluri, Y. Li,
A. Bharambe, and L. Van Der Maaten, “Exploring the limits of
weakly supervised pretraining,” in ECCV, 2018.

[46] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their compo-
sitionality,” in NeurIPS, 2013.

[47] D.-H. Lee et al., “Pseudo-label: The simple and efficient semi-
supervised learning method for deep neural networks,” in ICML
Workshop, 2013.

[48] Q. Xie, M.-T. Luong, E. Hovy, and Q. V. Le, “Self-training with noisy
student improves imagenet classification,” in CVPR, 2020.

[49] M. N. Rizve, K. Duarte, Y. S. Rawat, and M. Shah, “In defense of
pseudo-labeling: An uncertainty-aware pseudo-label selection frame-
work for semi-supervised learning,” arXiv preprint arXiv:2101.06329,
2021.

[50] M. Sajjadi, M. Javanmardi, and T. Tasdizen, “Regularization with
stochastic transformations and perturbations for deep semi-supervised
learning,” in NeurIPS, 2016.

[51] S. Laine and T. Aila, “Temporal ensembling for semi-supervised
learning,” arXiv preprint arXiv:1610.02242, 2016.

[52] T. Miyato, S.-i. Maeda, M. Koyama, and S. Ishii, “Virtual adversarial
training: a regularization method for supervised and semi-supervised
learning,” IEEE TPARMI, 2018.

[53] D. Berthelot, N. Carlini, E. D. Cubuk, A. Kurakin, K. Sohn, H. Zhang,
and C. Raffel, “Remixmatch: Semi-supervised learning with dis-
tribution alignment and augmentation anchoring,” arXiv preprint
arXiv:1911.09785, 2019.

[54] N. Japkowicz, “The class imbalance problem: Significance and strate-
gies,” in IJCAI, 2000.

[55] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“Smote: synthetic minority over-sampling technique,” Journal of ar-
tificial intelligence research, 2002.

[56] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE
Transactions on knowledge and data engineering, 2009.

[57] J. Byrd and Z. Lipton, “What is the effect of importance weighting
in deep learning?” in ICML, 2019.

[58] C. Huang, Y. Li, C. C. Loy, and X. Tang, “Deep imbalanced learning
for face recognition and attribute prediction,” IEEE transactions on
pattern analysis and machine intelligence, 2019.

[59] A. K. Menon, S. Jayasumana, A. S. Rawat, H. Jain, A. Veit, and
S. Kumar, “Long-tail learning via logit adjustment,” arXiv preprint
arXiv:2007.07314, 2020.

[60] X. Yin, X. Yu, K. Sohn, X. Liu, and M. Chandraker, “Feature transfer
learning for deep face recognition with under-represented data,” arXiv
preprint arXiv:1803.09014, 2018.

[61] Z. Liu, Z. Miao, X. Zhan, J. Wang, B. Gong, and S. X. Yu, “Large-
scale long-tailed recognition in an open world,” in CVPR, 2019.

[62] B. Kang, S. Xie, M. Rohrbach, Z. Yan, A. Gordo, J. Feng, and
Y. Kalantidis, “Decoupling representation and classifier for long-
tailed recognition,” arXiv preprint arXiv:1910.09217, 2019.

[63] H. S. Anderson and P. Roth, “Ember: an open dataset for train-
ing static pe malware machine learning models,” arXiv preprint
arXiv:1804.04637, 2018.

[64] Y. Chen, S. Wang, D. She, and S. Jana, “On training robust {PDF}
malware classifiers,” in USENIX Security Symposium, 2020.

[65] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and
C. Siemens, “Drebin: Effective and explainable detection of android
malware in your pocket.” in NDSS, 2014.

[66] M. Lindorfer, M. Neugschwandtner, and C. Platzer, “Marvin: Effi-
cient and comprehensive mobile app classification through static and
dynamic analysis,” in COMPSAC, 2015.

[67] E. Mariconti, L. Onwuzurike, P. Andriotis, E. De Cristofaro,
G. Ross, and G. Stringhini, “Mamadroid: Detecting android malware
by building markov chains of behavioral models,” arXiv preprint
arXiv:1612.04433, 2016.

[68] C. Curtsinger, B. Livshits, B. Zorn, and C. Seifert, “{ZOZZLE}:
Fast and precise {In-Browser}{JavaScript} malware detection,” in
USENIX Security Symposium, 2011.

[69] S. Xi, S. Yang, X. Xiao, Y. Yao, Y. Xiong, F. Xu, H. Wang, P. Gao,
Z. Liu, F. Xu et al., “Deepintent: Deep icon-behavior learning for
detecting intention-behavior discrepancy in mobile apps,” in CCS,
2019.

[70] J. DeLoach, D. Caragea, and X. Ou, “Android malware detection with
weak ground truth data,” in IEEE BigData, 2016.

[71] Z. Kan, F. Pendlebury, F. Pierazzi, and L. Cavallaro, “Investigating
labelless drift adaptation for malware detection,” in Proceedings of
the 14th ACM Workshop on Artificial Intelligence and Security, 2021.

[72] L. Massarelli, L. Aniello, C. Ciccotelli, L. Querzoni, D. Ucci, and
R. Baldoni, “Android malware family classification based on resource
consumption over time,” in MALWARE, 2017.

[73] J. Liang, W. Guo, T. Luo, V. Honavar, G. Wang, and X. Xing, “Fare:
Enabling fine-grained attack categorization under low-quality labeled
data,” in NDSS, 2021.

[74] A. Kantchelian, M. C. Tschantz, S. Afroz, B. Miller, V. Shankar,
R. Bachwani, A. D. Joseph, and J. D. Tygar, “Better malware ground
truth: Techniques for weighting anti-virus vendor labels,” in Proceed-
ings of the 8th ACM Workshop on Artificial Intelligence and Security,
2015.

[75] M. Hurier, G. Suarez-Tangil, S. K. Dash, T. F. Bissyandé, Y. Le Traon,
J. Klein, and L. Cavallaro, “Euphony: Harmonious unification of
cacophonous anti-virus vendor labels for android malware,” in MSR,
2017.

[76] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. McDaniel,
“Adversarial perturbations against deep neural networks for malware
classification,” arXiv preprint arXiv:1606.04435, 2016.

[77] Q. Wang, W. Guo, K. Zhang, A. G. Ororbia, X. Xing, X. Liu,
and C. L. Giles, “Adversary resistant deep neural networks with an
application to malware detection,” in KDD, 2017.

[78] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu,
“Towards deep learning models resistant to adversarial attacks,” arXiv
preprint arXiv:1706.06083, 2017.

[79] R. Taheri, R. Javidan, M. Shojafar, Z. Pooranian, A. Miri, and
M. Conti, “On defending against label flipping attacks on malware
detection systems,” Neural Computing and Applications, 2020.

[80] L. Yang, W. Guo, Q. Hao, A. Ciptadi, A. Ahmadzadeh, X. Xing, and
G. Wang, “{CADE}: Detecting and explaining concept drift samples
for security applications,” in USENIX Security Symposium, 2021.

[81] F. Pierazzi, F. Pendlebury, J. Cortellazzi, and L. Cavallaro, “Intriguing
properties of adversarial ml attacks in the problem space,” in S&P,
2020.

[82] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss
for dense object detection,” in ICCV, 2017.

[83] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “Androzoo:
Collecting millions of android apps for the research community,” in
MSR, 2016.

[84] A. Vaswani, N. Shazeer, N. Parmar et al., “Attention is all you need,”
in NeurIPS, 2017.

[85] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel, and E. Kirda,
“Scalable, behavior-based malware clustering.” in NDSS, 2009.

[86] B. Anderson, D. Quist, J. Neil, C. Storlie, and T. Lane, “Graph-based
malware detection using dynamic analysis,” Journal in computer
Virology, 2011.

15

[87] T. Wüchner, M. Ochoa, and A. Pretschner, “Robust and effective
malware detection through quantitative data flow graph metrics,” in
DIMVA, 2015.

[88] K. Rieck, P. Trinius, C. Willems, and T. Holz, “Automatic analysis
of malware behavior using machine learning,” Journal of computer
security, 2011.

[89] M. Kalash, M. Rochan, N. Mohammed, N. D. Bruce, Y. Wang,
and F. Iqbal, “Malware classification with deep convolutional neural
networks,” in NTMS). IEEE, 2018.

[90] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath, “Malware
images: visualization and automatic classification,” in VizSec, 2011.

[91] E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and C. K.
Nicholas, “Malware detection by eating a whole exe,” in Workshops at
the Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[92] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury et al., “Pytorch:
An imperative style, high-performance deep learning library,” in
NeurIPS, 2019.

[93] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[94] A. Paudice, L. Muñoz-González, and E. C. Lupu, “Label sanitization
against label flipping poisoning attacks,” in ECML/PAKDD, 2018.

10. Appendix

10.1. Feature Engineering in the PE Dataset

We adopt a common static feature extraction
method [37] to process the PE malware files in our
real-world dataset. For each PE, this method extracts four
sets of features, each of which is a 256-dimensional vector,
and concatenates these feature vectors into a final vector
representation with a length of 1,024.

• Byte entropy histogram features characterize the fre-
quency of each hex in the binary sequence. Specifically,
it first computes the entropy for each hex within a fixed-
length sliding window and marks each entropy value
and hex value as a pair. Then, it counts the frequency
of each hex-entropy pair as the sliding window passes
through the binaries. From these pairs, it identifies the
maximum and minimum value of the entropy and cuts
this value range into 16 intervals with the same length.
Similarly, it also splits the [0, 255] value range of hex
into 16 even intervals. With these two intervals, it then
constructs a 16 × 16 zero matrix X, where X[i, j]
represents the i-th interval of the hex value and the
j-th interval of the entropy value. If the values of a
hex-entropy pair fall into the intervals represented by
X[i, j], it adds 1 to X[i, j]. Here, the value of X[i, j]
stands for the number of pairs falling into the corre-
sponding intervals. Finally, it transforms the 16 × 16
matrix into a 256-dimensional vector.

• PE import features capture the function calls within
the given malware. To do so, this method first extracts
the import address table of the given file and leverages
a hash function to project the function name ad its
corresponding DDL name of each function call within
the table into a number between [0, 255]. Finally, it
then counts the frequency of these numbers as the
feature values.

• String histogram features represent the printable
strings in the given file. For each printable string, this
method first transforms it into a value between [0, 15]
using a hash function and records the length of this
string. Using the method in byte entropy histogram
features, it then constructs a frequency matrix for hash
value and string length. Finally, the feature vector can
be generated by flattening the matrix.

• PE metadata features capture the frequency of numer-
ical PE fields in the given file. Similar to PE import
features, here, the textual name of each PE field is
hashed into a number between [0, 255]. Then, the
numbers’ frequencies are used as the feature values.

Recent research also explores extracting features via
dynamic analysis [85], [86], [87], [88] or transforming raw
binaries into grey-scale images [89], [90]. Recent work [39]
shows that the computational cost of extracting dynamic
features is much higher than the cost of extracting static
features. Converting malware into images would break the
semantic information in the original binaries [91].

10.2. Implementation Details

Implementations. We implement MORSE using the
Pytorch [92] package. As for the existing noise learning
methods, we use the code released by the authors or the pop-
ular implementations publicly available if the authors didn’t
release codes. Below are the links of the implementations:
Coteaching+: https://github.com/xingruiyu/coteaching_plus;
MentorMix: https://github.com/google-research/google-r
esearch/tree/master/mentormix; LRT: https://github.com/p
ingqingsheng/LRT; Noise-adaption: https://github.com/udi
br/noisy_labels; LIO: https://github.com/YivanZhang/lio;
ELR: https://github.com/shengliu66/ELR; Bootstrap and
GCE: https://github.com/YisenWang/symmetric_cross_ent
ropy_for_noisy_labels.
Hyper-parameters of MORSE. Our method has three sets
of hyper-parameters: model structure and training hyper-
parameters, hyper-parameters inherent from FixMatch and
selected sample re-weighting method, hyperparameters in-
troduced by our methods. Regarding the first set of hyper-
parameters, we set the structure the same across all the meth-
ods: MLP with ReLU activation-2381-1024-1024-10 for the
synthetic dataset, MLP with ReLU activation-1024-512-512-
12 for the PE dataset, and MLP with ReLU activation-217-
512-512-13 for the Android dataset. The CNN structure is as
follows. We use two one-dimensional convolutional layers
with the kernel size of 1 and 3 and two max-pooling layers
with the kernel size of 4. After the second pooling layer,
we use a MLP with the structure of 256-256.

We also use the same training hyper-parameters for all
the methods: adam [93] with a learning rate of 0.001, a batch
size of 128. The epoch number is 100 for synthetic datasets,
140 for the PE dataset, and 100 for the Android dataset.
For hyper-parameters inherent from FixMatch and selected
sample re-weighting method (unsupervised loss weight: λ,
threshold of pseudo labeling: γ, and hyper-parameter in
sample re-weighting: β), we tune them and find our method

16

https://github.com/xingruiyu/coteaching_plus
https://github.com/google-research/google-research/tree/master/mentormix
https://github.com/google-research/google-research/tree/master/mentormix
https://github.com/pingqingsheng/LRT
https://github.com/pingqingsheng/LRT
https://github.com/udibr/noisy_labels
https://github.com/udibr/noisy_labels
https://github.com/YivanZhang/lio
https://github.com/shengliu66/ELR
https://github.com/YisenWang/symmetric_cross_entropy_for_noisy_labels
https://github.com/YisenWang/symmetric_cross_entropy_for_noisy_labels

TABLE 13: Accuracy by varying the unique hyper-parameter of baselines on the PE real-world dataset. The bold one in
column-3 is our hyper-parameter choice. We run each experiment six times and report the mean and standard errors.

Methods Method unique hyper-parameter Vary range Mean/std of classification accuracy (%)

Coteaching+ Forget-rate 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, 0.9

87.30/0.64, 87.39/0.65, 87.10/0.20, 87.02/0.74,
87.20/0.69, 86.92/0.21, 87.05/0.70, 86.95/0.53, 86.80/0.60

MentorMix p-percentile 90%, 80%, 70% 92.30/0.20, 92.34/0.10, 92.12/0.13

Bootstrap Weights of
learned label

0.15, 0.25, 0,35, 0.45,
0.55, 0.65, 0.75, 0.85, 0.95

92.88/0.17, 92.92/0.30, 92.88/0.17, 92.91/0.17,
92.90/0.34, 92.90/0.39, 92.65/0.26, 67.82/8.38, 19.14/5.50

LRT Epoch that starts to
perform label correct 10, 15, 30, 35 92.52/0.21, 92.50/0.23, 92.30/0.16, 92.35/0.35

Noise-adaption No extra hyper-parameters None None

LIO Estimation methods
of transition matrix Gradient-based, Dirichlet posterior update 92.05/0.33, 92.30/0.35

GCE q
0.1, 0.2, 0,3, 0.4,

0.5, 0.6, 0.7, 0.8, 0.9
92.15/0.27, 92.10/0.33, 92.08/0.22, 92.01/0.18,

92.03/0.36, 91.98/0.26, 91.93/0.24, 91.88/0.25, 91.82/0.18
ELR λ 1, 3, 5, 7, 10 91.84/0.18, 91.70/0.30, 91.56/0.16, 91.40/0.34, 91.29/0.30

TABLE 14: MORSE vs DT on the Drebin dataset.
Methods Average Accuracy (%) Average Precision (%) Average F1 (%)

Vanilla DNN 84.41/1.02 84.65/1.03 84.39/1.04

DT 78.68/2.97 77.29/3.52 77.97/2.38
p = 0.993 p = 0.996 p = 0.994

Our method
w/o re-weighting

86.40/0.18 86.32/0.15 86.35/0.17
p = 0.030 p = 0.032 p = 0.010
86.60/0.96 86.45/0.95 86.39/0.94Our method
p = 0.008 p = 0.004 p = 0.008

is not that sensitive to these parameters. As such, we use
the default choices: λ = 1, γ = 0.95, β = 0.999.

For the hyper-parameters introduced by our method
(i.e., labeled data’s proportion: d, warm-up epoch, pa in data
augmentation), the sensitivity test in Section 6 shows the
influence of labeled data’s proportion d. For the other two
hyperparameters, our experiment shows that subtly varying
them imposes minor influence on the results and we use the
values selected via a grid search (i.e., 5 for the warm-up
epoch, pa=0.9/0.8 for weak/strong augmentation).

Hyper-parameters of existing noise learning methods.
The network structure and training hyper-parameters are
the same across all the methods. Besides the common
hyper-parameters, some baselines have their unique hyper-
parameters. As mentioned in Section 3, to ensure a fair com-
parison, we carefully tune these unique hyper-parameters
and select the ones with the best performance. Table 13
shows the intermediate results of all the choices we have
tried for the unique hyper-parameter of each method.

Paired t-test. We use a paired t-test to to measure the statis-
tical significance of performance comparison between two
methods. Specifically, given two sets of classification accu-
racy obtained by method1 and method2, we first compute
their difference, i.e., diff = accmethod1−accmethod2. With the
diff , we set the null hypothesis as H0 : E[diff] ≤ 0 and
compute the p-value. If p-value is smaller than a threshold
(i.e., 0.05), we can reject H0 and conclude that method1
is better than method2. Otherwise, we cannot reject H0

and thus cannot draw the above conclusion. Throughout
our evaluation, we treat the vanilla method as method2 and
existing noise learning methods and our method as method1.
That means if p-value is lower than 0.05, we can conclude
the corresponding noise learning method outperforms the
vanilla method with statistical significance.

TABLE 15: Traditional ML methods before and after aug-
menting with our designs on the PE dataset.

Methods Average (%) Class-11 (%)
Accuracy Precision F1 Accuracy Precision F1

Vanilla DNN 93.08/0.25 93.65/0.51 92.57/0.36 44.33/3.78 96.34/4.22 60.48/3.22

SVM 87.74/0.01 91.92/0.01 85.43/0.01 4.00/0.01 100.00/0.00 7.69/0.01
p = 1.000 p = 0.999 p = 1.000 p = 1.000 p = 0.055 p = 1.000

Random forest 92.38/0.17 94.31/0.18 91.36/0.32 28.50/1.50 100.00/0.00 44.32/1.52
p = 0.995 p = 0.016 p = 0.999 p = 0.999 p = 0.056 p = 0.998

Random forest
w/ our designs

93.64/0.45 94.55/0.31 92.87/0.55 53.50/5.15 99.12/1.96 69.45/4.05
p = 0.021 p = 0.006 p = 0.073 p = 0.006 p = 0.107 p = 0.010

GBDT 91.83/0.23 93.09/0.24 91.25/0.12 24.30/0.52 88.89/1.20 38.06/2.05
p = 0.995 p = 0.970 p = 0.999 p = 0.999 p = 0.994 p = 1.000

GBDT
w/ our designs

93.26/0.28 94.13/0.41 92.17/0.65 40.33/1.97 97.80/2.88 54.39/5.39
p = 0.222 p = 0.067 p = 0.667 p = 0.959 p = 0.225 p = 0.970

Logistic regression 91.58/0.01 92.29/0.01 90.58/0.01 34.00/0.01 94.44/0.01 50.00/0.01
p = 1.000 p = 0.999 p = 0.999 p = 0.999 p = 0.819 p = 0.999

Logistic regression
w/ our designs

92.41/0.01 93.25/0.01 91.54/0.01 40.50/0.50 100.00/0.00 57.60/0.48
p = 0.999 p = 0.924 p = 0.997 p = 0.964 p = 0.055 p = 0.939
94.15/0.43 94.14/0.57 93.91/0.67 65.33/4.20 90.18/2.08 76.74/1.22Our method
p = 0.003 p = 0.061 p = 0.000 p = 0.000 p = 0.984 p = 0.000

TABLE 16: Traditional ML methods before and after aug-
menting with our designs on the synthetic dataset with a
noise rate of 0.6 and an imbalance ratio of 20x.

Methods Overall cls (%) Rare cls (%)
Accuracy Precision F1 Accuracy Precision F1

Vanilla DNN 68.04/1.77 70.38/6.31 63.68/4.12 48.93/4.03 73.16/9.31 53.39/7.05

SVM 58.80/0.01 63.81/0.01 54.55/0.01 27.48/0.01 60.00/0.01 35.74/0.01
p = 1.000 p = 0.924 p = 0.992 p = 1.000 p = 0.089 p = 0.979

Random forest 47.08/0.86 58.86/1.12 45.92/1.10 28.07/1.11 72.51/1.47 38.88/1.47
p = 0.995 p = 0.996 p = 1.000 p = 0.999 p = 0.562 p = 0.998

Random forest
w/ our designs

54.00/0.52 64.74/2.65 53.64/1.58 43.76/1.25 77.24/3.98 52.86/3.23
p = 1.000 p = 0.891 p = 0.978 p = 1.000 p = 0.256 p = 0.618

GBDT 47.71/1.24 51.95/0.28 40.33/0.12 14.32/1.41 57.51/1.10 20.57/1.05
p = 1.000 p = 0.999 p = 1.000 p = 0.980 p = 0.994 p = 1.000

GBDT
w/ our designs

59.40/0.23 60.47/0.11 54.19/0.21 46.08/0.03 56.33/1.10 47.95/1.01
p = 1.000 p = 0.991 p = 0.998 p = 0.980 p = 0.995 p = 0.968

Logistic regression 63.86/0.01 65.06/0.01 60.04/0.00 53.44/0.01 76.85/0.01 58.55/0.01
p = 1.000 p = 0.941 p = 0.947 p = 0.027 p = 0.208 p = 0.081

Logistic regression
w/ our designs

65.20/0.01 72.79/0.01 62.56/0.01 48.76/0.01 80.60/0.01 56.51/0.01
p = 0.999 p = 0.216 p = 0.713 p = 0.150 p = 0.067 p = 0.183
76.20/0.59 79.45/1.69 72.90/1.17 61.21/1.00 80.45/0.99 64.25/0.20Our method
p = 0.000 p = 0.016 p = 0.003 p = 0.000 p = 0.066 p = 0.009

10.3. MORSE vs. Traditional ML Algorithms

Besides the DL-based methods considered in our exper-
iment, we also compare our method with four representative
traditional ML methods – SVM, Random forest, GBDT, and
Logistic regression. Specifically, we first run these methods
and MORSE on the PE dataset and a synthetic dataset with
a noise rate of 60% and an imbalance ratio of 20x. We run
each method six times and report the mean accuracy and the
p-value comparison with Vanilla DNN in Table 15 and 16.
The results show that all four methods have worse perfor-
mance than the Vanilla DNN on both datasets, indicating
these methods also suffer from noisy labels and imbalance.

We further integrate our designs into those traditional
ML models except SVM, which is not applicable. The re-

17

TABLE 17: MORSE vs. baselines augmented with re-
weighting on the PE dataset.

Methods Average (%) Class-11 (%)
Accuracy Precision F1 Accuracy Precision F1

Vanilla DNN 93.08/0.25 93.65/0.51 92.57/0.36 44.33/3.78 96.34/4.22 60.48/3.22
Vanilla

w/ re-weighting
93.82/0.29 94.01/0.30 93.50/0.34 55.67/2.98 89.71/2.30 68.61/1.70
p = 0.003 p = 0.102 p = 0.001 p = 0.001 p = 0.974 p = 0.001

Coteaching+
w/ re-weighting

93.79/0.36 93.92/0.72 93.24/0.79 58.67/4.38 93.52/2.63 69.29/3.56
p = 0.001 p = 0.286 p = 0.034 p = 0.001 p = 0.868 p = 0.000

MentorMix
w/ re-weighting

92.00/0.37 93.42/0.14 92.70/0.23 56.50/1.15 90.24/3.35 67.82/2.14
p = 0.752 p = 0.520 p = 0.048 p = 0.001 p = 0.992 p = 0.001

Bootstrap
w/ re-weighting

93.64/0.45 94.03/0.67 93.29/0.50 53.50/5.15 92.39/3.53 67.70/2.11
p = 0.021 p = 0.117 p =0.004 p = 0.006 p = 0.035 p = 0.001

LRT
w/ re-weighting

93.25/0.31 93.67/0.16 92.99/0.13 53.00/4.55 91.07/1.96 67.13/2.83
p = 0.194 p = 0.475 p = 0.006 p = 0.031 p = 0.948 p = 0.010

Noise-adaption
w/ re-weighting

93.82/0.28 93.85/0.25 93.44/0.30 54.50/2.36 87.93/1.12 67.26/1.70
p = 0.007 p = 0.160 p = 0.000 p = 0.000 p = 0.996 p = 0.002

LIO
w/ re-weighting

93.02/0.35 93.31/0.25 92.91/0.15 52.20/3.10 89.12/4.23 65.93/2.45
p = 0.320 p = 0.621 p = 0.012 p = 0.020 p = 0.991 p = 0.001

GCE
w/ re-weighting

93.89/0.19 93.92/0.12 93.39/0.17 58.33/2.05 89.92/4.80 68.66/0.92
p = 0.000 p = 0.129 p = 0.000 p = 0.000 p = 0.985 p = 0.001

ELR
w/ re-weighting

93.30/0.15 93.81/0.20 93.17/0.25 51.00/3.27 90.89/4.56 65.98/3.15
p = 0.124 p = 0.274 p = 0.002 p = 0.031 p = 0.927 p = 0.001
94.15/0.43 94.14/0.57 93.91/0.67 65.33/4.20 90.18/2.08 76.74/1.22Our method
p = 0.003 p = 0.061 p = 0.000 p = 0.000 p = 0.984 p = 0.000

TABLE 18: MORSE vs. LS on the poisoned PE malware dataset.

Methods Average (%) Class-11 (%)
Accuracy Precision F1 Accuracy Precision F1

Vanilla DNN 89.14/0.76 90.41/1.23 88.80/0.81 45.83/18.20 73.15/9.00 53.15/12.51

LS 84.00/0.33 82.87/3.23 81.98/0.54 1.33/2.98 16.67/37.27 2.47/5.52
p = 1.000 p = 0.997 p = 1.000 p = 0.998 p = 0.990 p = 0.997
91.46/1.16 92.05/0.79 91.41/1.10 57.33/2.36 77.12/3.47 65.71/1.99Our method
p = 0.003 p = 0.020 p = 0.001 p = 0.111 p = 0.234 p = 0.032

sults in Table 15 and 16 show that our designs could improve
those methods under noisy labels and class imbalance. We
also observe that even with our design, these methods still
cannot outperform our method with DNN, which verifies
the necessity of using DNN-based models.

10.4. Baselines with Sample Re-weighting

To verify (1) the effectiveness of our sample re-
weighting method; (2) the necessity of our other designs,
we also augment our sample re-weighting method to our
comparison baselines on the PE dataset. Similar to the
previous experiments, all the methods are run six times,
and the results are shown in Table 17. Note that we tune
the re-weighting parameter β in each method and report
the optimal result. First, we can observe that compared to
the results in Table 4, the augmented baselines show better
performance than its original version, verifying the efficacy
of our sample re-weighting. Table 17 also shows that MORSE
still outperforms the augmented baselines, verifying the ne-
cessity of our other designs. The augmented noisy learning
methods still perform worse than MORSE because: (1) These
methods are fully supervised and they cannot extract useful
information from unlabeled samples. (2) The design flaws
of these methods still exist even with re-weighting.

10.5. MORSE vs. DT

Following [22], we use a binary classification dataset
Drebin [65]. To construct a noisy training set, we first
randomly select 4,000 benign ware and 4,000 malware and
then flipped the labels of 45% randomly selected training
samples. For a binary classification dataset, 45% is a very
high rate, which is almost near a randomly labeled dataset
(with a noise rate of 50%). We then randomly select 1,000

TABLE 19: MORSE with different data augmentation methods.

Methods Average (%) Class-11 (%)
Accuracy Precision F1 Accuracy Precision F1

Vanilla DNN 93.08/0.25 93.65/0.51 92.57/0.36 44.33/3.78 96.34/4.22 60.48/3.22
Our method

w class-level augmentation
94.04/0.28 94.02/0.34 93.87/0.32 66.00/2.83 86.47/1.09 74.83/1.93
p = 0.001 p = 0.109 p = 0.000 p = 0.000 p = 0.999 p = 0.000
94.15/0.43 94.14/0.57 93.91/0.67 65.33/4.20 90.18/2.08 76.74/1.22Our method
p = 0.003 p = 0.061 p = 0.000 p = 0.000 p = 0.984 p = 0.000

benign ware and 1,000 malware from the rest samples as
our testing set. We evaluate our method and DT on the
above dataset and show the results in Table 14. The table
demonstrates that our method significantly outperforms DT,
validating the superiority of our method in dealing with a
dataset with a high noise rate. Note that we use the same
network structure for both methods and used the default
choices for the hyperparameters in [22].

10.6. MORSE against Label Poisoning Attacks

We evaluate the robustness of MORSE against a state-
of-the-art label poisoning attack [79] and compare it with
a widely used defense Label Sanitization (LS) [94]. Using
the PE malware dataset, we construct a poisoned training
set with a poison rate as 20% using the attack in [79].
Then, we run vanilla method, our method, and LS on this
poisoned dataset. The results are shown in Table 18. As we
can observe from the table, MORSE performs the best among
all three methods, verifying our argument in Section 8.

10.7. MORSE with class-level Data Augmentation

We replace our augmentation method with another
method that better preserves the labels of the augmented
samples, i.e., selecting samples from the same class as x̄
and using Equation (3) for augmentation. We run MORSE
with this augmentation method on the PE dataset and show
the result in Table 19. As we can observe from the table,
using this new augmentation method does not improve the
model performance. As discussed in Section 5.3, the reason
is that rather than using their given labels, most augmented
samples are treated as unlabeled data and are relabeled with
pseudo labels in the learning process.

10.8. MORSE against Concept Drifts

We run a temporal evaluation for MORSE by follow-
ing the setup in [39]. Specifically, we split the BODMAS
dataset into a training and two testing sets based on time.
The training set contains samples in 10 families collected
from 08/29/2019 to 10/01/2019. The first testing set is
collected from 10/01/2019 to 11/01/2019. and the second
is collected from 09/01/2020 to 10/01/2020. The testing set
could have unknown malware families. We train six models
using MORSE with different initial parameters and test their
performance on two testing sets. The average test precision,
recall, and F1 score (%) on the first and second testing
set are 51.44/1.14, 84.30/0.96, 62.61/0.97 and 31.99/2.91,
70.86/0.61, 39.76/2.35, respectively. The results show that
drifting samples indeed have a negative impact on MORSE.

18

	Introduction
	Summary of Existing Methods
	Evaluation of Existing Methods
	Dataset & Characteristics
	Evaluation

	Hypothesis Test
	Proposed Method
	Design Principle & Technical Overview
	Background of Semi-supervised Learning
	Our Proposed Method

	Evaluation of Proposed Method
	Experiment Setup
	Experiment Design
	Experiment Results

	Other Related Work
	Discussion & Future Work
	Conclusion
	References
	Appendix
	Feature Engineering in the PE Dataset
	Implementation Details
	MORSE vs. Traditional ML Algorithms
	Baselines with Sample Re-weighting
	MORSE vs. DT
	MORSE against Label Poisoning Attacks
	MORSE with class-level Data Augmentation
	MORSE against Concept Drifts

