
This paper is included in the Proceedings of the
28th USENIX Security Symposium.

August 14–16, 2019 • Santa Clara, CA, USA

978-1-939133-06-9

Open access to the Proceedings of the
28th USENIX Security Symposium

is sponsored by USENIX.

DEEPVSA: Facilitating Value-set Analysis with
Deep Learning for Postmortem Program Analysis

Wenbo Guo, Dongliang Mu, and Xinyu Xing, The Pennsylvania State University;
Min Du and Dawn Song, University of California, Berkeley

https://www.usenix.org/conference/usenixsecurity19/presentation/guo

DEEPVSA: Facilitating Value-set Analysis with Deep Learning
for Postmortem Program Analysis

†Wenbo Guo∗, †Dongliang Mu∗, †Xinyu Xing, ‡Min Du, ‡Dawn Song
†College of IST, Pennsylvania State University

‡Department of EECS, University of California, Berkeley

Abstract

Value set analysis (VSA) is one of the most powerful binary
analysis tools, which has been broadly adopted in many use
cases, ranging from verifying software properties (e.g., vari-
able range analysis) to identifying software vulnerabilities
(e.g., buffer overflow detection). Using it to facilitate data
flow analysis in the context of postmortem program analy-
sis, it however exhibits an insufficient capability in handling
memory alias identification. Technically speaking, this is due
to the fact that VSA needs to infer memory reference based
on the context of a control flow, but accidental termination
of a running program left behind incomplete control flow
information, making memory alias analysis clueless.

To address this issue, we propose a new technical approach.
At the high level, this approach first employs a layer of in-
struction embedding along with a bi-directional sequence-to-
sequence neural network to learn the machine code pattern
pertaining to memory region accesses. Then, it utilizes the
network to infer the memory region that VSA fails to rec-
ognize. Since the memory references to different regions
naturally indicate the non-alias relationship, the proposed
neural architecture can facilitate the ability of VSA to per-
form better alias analysis. Different from previous research
that utilizes deep learning for other binary analysis tasks,
the neural network proposed in this work is fundamentally
novel. Instead of simply using off-the-shelf neural networks,
we introduce a new neural network architecture which could
capture the data dependency between and within instructions.

In this work, we implement our deep neural architecture
as DEEPVSA, a neural network assisted alias analysis tool.
To demonstrate the utility of this tool, we use it to analyze
software crashes corresponding to 40 memory corruption vul-
nerabilities archived in Offensive Security Exploit Database.
We show that, DEEPVSA can significantly improve VSA with
respect to its capability in analyzing memory alias and thus
escalate the ability of security analysts to pinpoint the root
cause of software crashes. In addition, we demonstrate that

∗Equal Contribution.

our proposed neural network outperforms state-of-the-art neu-
ral architectures broadly adopted in other binary analysis
tasks. Last but not least, we show that DEEPVSA exhibits
nearly no false positives when performing alias analysis.

1 Introduction

Despite the best efforts of developers, software inevitably
contains flaws that may be leveraged as security vulnera-
bilities. Modern operating systems integrate various secu-
rity mechanisms to prevent software faults from being ex-
ploited [18, 36, 51, 53]. To bypass these defenses and hijack
program execution, an attacker therefore needs to constantly
mutate an exploit and make many attempts. While in their at-
tempts, the exploit triggers a security vulnerability and makes
the running process terminate abnormally.

To analyze the unexpected termination (i.e., program crash)
and thus pinpoint the root cause, software developers or
security analysts need to perform backward taint analy-
sis [17, 20, 39], track down how a bad value is passed to
the crashing site and thus pinpoint the statements that led
to the crash. Technically speaking, this process can be sig-
nificantly facilitated – and even automated – if the control
and data flows pertaining to the crash are available upon its
termination.

Recently, a large amount of research has demonstrated
that program execution can be recorded through hardware
tracing (e.g., [30, 55]) in a least intrusive manner. As a
result, a software developer can easily restore the control
flow pertaining to a program crash. However, the recovery of
data flow from the execution trace alone is still challenging,
especially when source code is not available. As it has been
discussed in recent research [55], this is primarily because
data flow construction is highly dependent upon the capability
of memory alias analysis [4, 5].

Of all the memory alias analysis techniques proposed in
past research, value-set analysis (VSA) is the most effective
and efficient technique and has been broadly adopted to fa-
cilitate the ability of identifying memory alias at the binary

USENIX Association 28th USENIX Security Symposium 1787

level [6]. Applied in the context of postmortem program
analysis, it however exhibits an insufficient capability in han-
dling memory alias identification. Technically speaking, this
is mainly because VSA needs to infer memory references
based on the context of a control flow. However, accidental
termination of a running program only leaves behind incom-
plete control flow information, making memory alias analysis
clueless.

To address this technical issue, we introduce a deep neural
network to enhance the capability of VSA in memory alias
analysis, especially in the context of software failure diagno-
sis. More specifically, we use this neural network to learn
the memory regions that each memory access refers to. The
rationale behind this approach is as follows. VSA divides
the address space of a process into several non-overlapping
regions (i.e., stack, heap, and global) and deem pairs of mem-
ory references to different regions as non-alias. With incom-
plete control flow information pertaining to a software crash,
VSA loses the execution context of a crashing program and
typically exhibits bad performance in assigning memory ref-
erences to different memory regions. Using deep learning, we
can learn complex execution patterns pertaining to memory
region accesses, restore the memory regions that VSA fails to
infer through incomplete control flow, and finally enhance the
capability of alias analysis for postmortem program analysis.

Different from previous research that utilizes deep learning
to tackle other binary analysis problems (e.g., [15, 48, 49,
56]), the deep neural network used in this work is novel. In-
stead of simply applying an off-the-shelf neural architecture
to our problem domain, we propose a new neural network ar-
chitecture. To be specific, our proposed solution first utilizes
an instruction embedding network to capture the semantic of
each instruction. Then, it employs a bi-directional sequence-
to-sequence neural architecture to learn the dependency be-
tween the instructions and predict the memory access for
each individual instruction. With this new design practice,
we could capture the dependency relationship within and be-
tween instructions and thus accurately predict the memory
regions that each instruction attempts to access. As we will
discuss and demonstrate in Section 3 and 4, this perfectly
reflects the characteristic of binary code analysis and signifi-
cantly benefits alias analysis in the context of software failure
diagnosis.

We implemented our proposed technique as DEEPVSA 1, a
neural network-assisted alias analysis tool for postmortem
program analysis. To the best of our knowledge, DEEPVSA is
the first tool that takes advantage of deep learning to improve
alias analysis in the context of postmortem program analysis.
We manually analyzed program crashes corresponding to 40
memory corruption vulnerabilities gathered from the Offen-
sive Security Exploit Database Archive [47] and compared
our manual analysis with the analysis conducted by DEEPVSA.

1The code, data and models of DEEPVSA are available at
https://github.com/Henrygwb/deepvsa/.

1 sub esp, 0x14
2 call malloc

......
3 ret
4 mov [eax], test
5 mov [esp+0x8], eax

6 push eax
7 call child
8 push ebp
9 mov ebp, esp
10 mov [0xC8], 0x0
11 mov eax, [ebp+0x8]
12 mov [eax], 0x1
13 mov [eax+0x4], 0x2
14 mov eax, 0
15 pop ebp
16 ret
17 mov eax, [esp+0xC]
18 call [eax] <--- crash site

Figure 1: An example instruction trace prior to a program
crash.

We observed that DEEPVSA can accurately resolve approxi-
mately 35% of unknown memory relationships that VSA fails
to identify when performing analysis on a crashing execution.
In addition, we discovered that the escalation in alias analysis
significantly improves the capability in tracking down the
root cause of software crashes. For about 75% failure cases,
DEEPVSA is capable of assisting backward taint analysis in
identifying the root causes of their crashes. Compared with
the broadly adopted neural networks in other binary analy-
sis tasks, we also demonstrate that our new neural network
architecture introduces no false positives in memory alias
identification.

In summary, this paper makes the following contributions:

• We discover that deep neural networks are a viable ap-
proach towards addressing alias analysis issues in the
context of software failure diagnosis.

• We propose a new neural network architecture which
could be used to improve alias analysis for VSA and
thus escalate the ability to diagnose the root cause of
software crashes.

• We implement our deep learning technique as DEEPVSA–
a tool for alias analysis facilitation – and demonstrate
its effectiveness by using 40 distinct software crashes
covering approximately 1.6 million lines of execution
trace in total.

The rest of the paper is organized as follows. Section 2
provides an overview of value-set analysis and its limita-
tions in postmortem program analysis. Section 3 presents
the deep neural network we propose to improve alias analy-
sis. Section 4 describes our implementation and evaluation,
demonstrating the utility of DEEPVSA. Section 5 surveys re-
lated work. Finally, we conclude this work in Section 6.

1788 28th USENIX Security Symposium USENIX Association

[eax]@4 ... [0xC8]@10 [ebp+0x8]@11 [eax]@12 [eax+4]@13 [esp+0xC]@17 [eax]@18
[eax]@4 - ... 0 0 1 0 0 1
...

[0xC8]@10 NA ... - ... 0 0 0 0
[ebp+0x8]@11 NA ... 0 - 0 0 0 0

[eax]@12 NA ... ? ? - 0 0 1
[eax+0x4]@13 NA ... ? ? ? - 0 0
[esp+0xC]@17 NA ... 0 0 ? ? - 0

[eax]@18 NA ... ? ? ? ? ? -

(a) Alias matrix identified by VSA. ‘0’, ‘1’ and ‘?’ represent non-alias, alias and may-alias relationships respectively.

Line # Complete Trace Incomplete Trace without DL Incomplete Trace with DL
A-loc Value-set A-loc Value-set A-loc Value-set

1 esp (⊥, [-0x14, -0x14], ⊥) NA NA NA NA

4 [eax]
(⊥, ⊥, [0, 0]) (test, ⊥, ⊥) NA NA NA NA

5 [esp+0x8]
(⊥, [-0xC, -0xC], ⊥) (⊥, ⊥, [0, 0]) NA NA NA NA

6 esp (⊥, [-0x18, -0x18], ⊥) esp (⊥, [-0x4, -0x4], ⊥) esp (⊥, [-0x4, -0x4], ⊥)
[esp]

(⊥, [-0x18, -0x18], ⊥) (⊥, ⊥, [0, 0]) [esp]
(⊥, [-0x4, -0x4], ⊥) (>, >, >) [esp]

(⊥, [-0x4, -0x4], ⊥) (⊥, ⊥, [X, X])

7 esp (⊥, [-0x1C, -0x1C], ⊥) esp (⊥, [-0x8, -0x8], ⊥) esp (⊥, [-0x8, -0x8], ⊥)
[esp]

(⊥, [-0x1C, -0x1C], ⊥) ([L17, L17], ⊥, ⊥) [esp]
(⊥, [-0x8, -0x8], ⊥) ([L17, L17], ⊥, ⊥) [esp]

(⊥, [-0x8, -0x8], ⊥) ([L17, L17], ⊥, ⊥)

8 esp (⊥, [-0x20, -0x20], ⊥) esp (⊥, [-0xC, -0xC], ⊥) esp (⊥, [-0xC, -0xC], ⊥)
[esp]

(⊥, [-0x20, -0x20], ⊥) (>, >, >) [esp]
(⊥, [-0xC, -0xC], ⊥) (>, >, >) [esp]

(⊥, [-0xC, -0xC], ⊥) (>, >, >)

9 ebp (⊥, [-0x20, -0x20], ⊥) ebp (⊥, [-0xC, -0xC], ⊥) ebp (⊥, [-0xC, -0xC], ⊥)

10 [0xC8]
([0xC8, 0xC8], ⊥, ⊥) ([0x0, 0x0], ⊥, ⊥) [0xC8]

([0xC8, 0xC8], ⊥, ⊥) ([0x0, 0x0], ⊥, ⊥) [0xC8]
([0xC8, 0xC8], ⊥, ⊥) ([0x0, 0x0], ⊥, ⊥)

11
[ebp+0x8]

(⊥, [-0x18, -0x18], ⊥) (⊥, ⊥, [0, 0]) [ebp+0x8]
(⊥, [-0x4, -0x4], ⊥) (>, >, >) [ebp+0x8]

(⊥, [-0x4, -0x4], ⊥) (⊥, ⊥, [X, X])

eax (⊥, ⊥, [0, 0]) eax (>, >, >) eax (⊥, ⊥, [X, X])

12 [eax]
(⊥, ⊥, [0, 0]) ([0x1, 0x1], ⊥, ⊥) [eax]

(>, >, >) ([0x1, 0x1], ⊥, ⊥) [eax]
(⊥, ⊥, [X, X]) ([0x1, 0x1], ⊥, ⊥)

13 [eax+4]
(⊥, ⊥, [4, 4]) ([0x2, 0x2], ⊥, ⊥) [eax+4]

(>, >, >) ([0x2, 0x2], ⊥, ⊥) [eax+4]
(⊥, ⊥, [X+0x4, X+0x4]) ([0x2, 0x2], ⊥, ⊥)

14 eax ([0x0, 0x0], ⊥, ⊥) eax ([0x0, 0x0], ⊥, ⊥) eax ([0x0, 0x0], ⊥, ⊥)

15 ebp (>, >, >) ebp (>, >, >) ebp (>, >, >)
esp (⊥, [-0x1C, -0x1C],⊥) esp (⊥,[-0x8,-0x8],⊥) esp (⊥,[-0x8,-0x8],⊥)

16 esp (⊥, [-0x18, -0x18], ⊥) esp (⊥, [-0x4, -0x4], ⊥) esp (⊥, [-0x4, -0x4], ⊥)

17
[esp+0xC]

(⊥, [-0xC, -0xC], ⊥) (⊥, ⊥, [0, 0]) [esp+0xC]
(⊥, [0x8, 0x8], ⊥) (>, >, >) [esp+0xC]

(⊥, [0x8, 0x8], ⊥) (⊥, ⊥, [X, X])

eax (⊥, ⊥, [0, 0]) eax (>, >, >) eax (⊥, ⊥, [X, X])

18 [eax]
(⊥, ⊥, [0, 0]) ([0x1, 0x1], ⊥, ⊥) [eax]

(>, >, >) (>, >, >) [eax]
(⊥, ⊥, [X, X]) ([0x1, 0x1], ⊥, ⊥)

(b) A-locs and value-sets corresponding to complete and incomplete traces with and without the facilitation of deep learning (DL).

Table 1: The results of value-set analysis against the instruction trace shown in Figure 1.

2 Background and Problem Scope

As is described and discussed in many recent research works
(e.g. [19, 55]), new hardware components could trace program
execution in a least intrusive fashion. With this capability, se-
curity analysts could easily obtain the control flow pertaining
to a software crash. Using the execution trace, it is however
still challenging to pinpoint the root cause of the crash (i.e.,
the instructions truly attributive to the crash). On the one hand,
this is because a security analyst barely has the access to the
source code of the crashing program. On the other hand, this
is because a security analyst needs to analyze the data flow
of the crashing trace which involves memory alias analysis at
the binary level. To tackle this challenge, value-set analysis
(VSA) can be adopted. In this section, we first introduce how
software instrumentation and hardware tracing are used to
record program execution. Second, we briefly describe how

to perform value-set analysis on a recorded execution trace.
Third, we specify how to use the derived value set to perform
alias analysis and thus diagnose the root cause of a software
crash. Finally, we provide a more in-depth discussion about
why VSA behaves poorly in many real-world applications.

2.1 Program Tracing for Software Debugging
Software instrumentation techniques have long been used to
fully record program execution and thus facilitate the root
cause diagnosis for a crashing program (e.g., [38, 37]). How-
ever, such an approach imposes significant overhead to a
software normal operation. In order to minimize additional
overhead, some lightweight instrumentation techniques have
been proposed (e.g., [41, 40]). While they are less intru-
sive and informative for assisting software debugging, such
a lightweight approach cannot be used to fully restore the

USENIX Association 28th USENIX Security Symposium 1789

control flow pertaining to a software crash.
Recently, the advance in hardware-assisted processor trac-

ing significantly ameliorates this situation. With the emer-
gence of brand new hardware components, such as Intel
PT [27] and ARM ETM [2], software developers and se-
curity analysts can trace instructions executed with nearly no
overhead and save them in a circular buffer. At the time of a
program crash, an operating system includes the trace into a
crash dump. Since this post-crash artifact contains both the
state of crashing memory and the execution history (i.e., the
last N instructions executed prior to the crash), software de-
velopers not only can inspect the program state at the time of
the crash, but also fully reconstruct the control flow that led
to the crash.

In this work, we focus on using an enhanced value-set
analysis technique to analyze such an aforementioned post-
crash artifact and thus facilitate the root cause diagnosis of a
crashing program. It should be noted that the aforementioned
lightweight software instrumentation approach is out of the
scope of this research because they cannot provide a complete
instruction trace for value-set analysis to identify memory
alias and thus pinpoint the root cause of the crash.

2.2 Value-set Analysis

Value-set analysis is an algorithm designed for analyzing
assembly code or an instruction trace in a static fashion.
Based on the observation that memory layout generally fol-
lows, VSA partitions memory into 3 disjoint memory re-
gions – global2, stack and heap – and assigns instructions
to the regions, accordingly. For some instructions, VSA
achieves region assignment by examining the semantics of
the instructions. For example, from a binary code per-
spective, accesses to global and stack variables appear as
[absolute-address] and [esp-offset]. Thus, VSA
can easily link the global and stack regions to the instruc-
tions mov edx,[0x8050684] and lea eax,[esp+4], re-
spectively. For other instructions, VSA performs a simple
forward data flow analysis to determine the regions tied to
instructions in a conservative fashion3. Take for example the
instruction trace shown in Figure 1. The instruction at line
4 indicates a write to the target memory [eax]. Through a
forward data flow analysis, VSA could easily pinpoint that
the value of eax was passed through line 3 because the
library function malloc places its return value in the regis-
ter eax. Given that the semantics of malloc is to allocate a
memory region on the heap and then return its reference to
the caller function, VSA could easily assign the heap region
to the instruction at line 4.

2Note that the global region consists of initialized and uninitialized data
segments.

3By ‘conservative fashion’, we refer to the fact that VSA does not actively
infer the value held in a memory cell if the data flow propagation is blocked
by an unknown memory reference.

In addition to assigning instructions to memory regions in
the ways above, VSA tracks down variable-like entities re-
ferred to as a-locs. By convention, an a-loc could be a register,
a memory cell on the stack, on the heap, or in the global re-
gion. Take the instruction trace shown in Figure 1 as an exam-
ple. The register a-locs contain all the registers esp, eax and
ebp. The global a-locs contain [0xC8]. The stack a-locs in-
clude [esp], [esp+0x8], [esp+0xC] and [ebp+0x8]. The
heap a-locs consist of [eax] and [eax+0x4]. It should be no-
ticed that, as is illustrated in Table 1b, VSA represents a non-
register a-loc as a combination of the value held by a memory
cell and the value set indicating the address of that mem-
ory cell. For example, the instruction mov [esp+0x8],eax

accesses the stack memory, and VSA specifies its correspond-
ing stack a-loc as [esp+0x8] (⊥, [-0xC, -0xC], ⊥).
Here, [esp+0x8] indicates the name of the stack memory
cell, and (⊥, [-0xC, -0xC], ⊥) is the value set of the
memory address or, in other words, the values that esp+0x8
could potentially equal to at the site of that instruction.

For each a-loc identified, VSA computes a value set, in-
dicating the set of values that each a-loc could potentially
equal to. By convention, VSA represents such a value set as
a 3-tuple pertaining to the three memory regions partitioned.
For each element in the tuple, VSA specifies a range of offsets
which indicates the values that the a-loc could equal to with
respect to the corresponding memory region.

To illustrate this, we take the register a-loc esp as an exam-
ple. As depicted in the first row of Table 1b, VSA specifies its
value set as a 3-tuple (global 7→ ⊥, stack 7→ [-0x14,

-0x14], heap 7→ ⊥), for brevity (⊥, [-0x14, -0x14],

⊥). In this set, ⊥ is a symbol denoting the empty set of
offsets (i.e., ∅). It reflects the fact that the register esp is the
stack pointer in x86 architecture and cannot refer to any mem-
ory cells on the heap or global region. Since the semantics of
the first instruction is to offset esp by 0x14 from the starting
point of the stack, VSA assigns the value set {-0x14} to the
register a-loc esp, and attaches this set to the stack. It should
be noticed that for specification consistency we write the
value sets {-0x14} tied to the stack as [-0x14, -0x14].

2.3 Alias Analysis and Root Cause Diagnosis

Alias Analysis. Given a control flow specified as a sequence
of instructions executed prior to a program crash, VSA can
track down a-locs, derive value sets, and perform memory
alias analysis by examining the value set tied to each of the
a-locs. To illustrate this, we again take the instruction trace
depicted in Figure 1 as an example and assume they represent
the entire execution trace prior to a program crash. Sup-
posing that Table 1b indicates the value set tied to each of
the a-locs identified from the instruction trace, we can eas-
ily observe that [esp] at line 6 and [ebp+0x8] at line
11 refer to the same memory region or in other words they
are alias of each other. In addition, we can observe [eax]

1790 28th USENIX Security Symposium USENIX Association

at line 4, 12 and 18 are also alias between each other.
This is simply because the a-locs tied to these memory re-
gions carry the overlapping value set corresponding to their
addresses, i.e., (⊥, [-0x18, -0x18], ⊥) for [esp] and
[ebp+0x8]; (⊥, ⊥, [0,0]) for [eax]. To better under-
stand the effect of VSA on alias analysis, we derive all the
alias and non-alias relationships from the value sets specified
in Table 1b, and depict them in the upper triangular portion
of the matrix shown in Table 1a.
Root Cause Diagnosis. With the alias analysis results and
the value sets in hand, it is relatively easy to perform a back-
ward taint analysis and thus track down the root cause of a
program crash. To illustrate this process, we continue the
example shown in Figure 1. Given that the program crashes
at line 18 when the program performs an indirect call, we
can easily discover that the bad destination [eax] was passed
through the instruction at line 12 in which memory [eax]

is assigned with a constant 0x1. As is described above, [eax]
at line 12 and 18 are the alias of each other. Therefore,
we can safely conclude the bad destination originally comes
from the instruction mov [eax],0x1 in line 12. Through
this backward analysis, we could deem the instruction mov

[eax],0x1 as the root cause of the crash.

2.4 Problem Scope

As is described in the aforementioned example, VSA exhibits
perfect performance in alias analysis and we could identify
the root cause of the crash successfully. However, this does
not imply that VSA could significantly resolve the memory
alias issue and thus perfectly facilitate postmortem program
analysis. To demonstrate this, we again take for example the
instruction trace shown in Figure 1. However, different from
the setup specified above, we assume the trace is available
only starting from line 6. As is described in Section 2.1,
hardware tracing components store a instruction trace in a cir-
cular buffer with limited size. As a result, it is commonplace
that a security analyst cannot obtain a complete crashing trace
but only a partial execution chronology prior to a program
crash. By truncating the trace in our example, we emulate the
scenario where there are only last N instructions recorded in
a post-crash artifact.

In Table 1b, we also show the a-locs identified from this
truncated trace. Compared with the value set derived from the
full execution trace shown in the same figure, we can easily
observe that nearly all the value sets tied to the a-locs are var-
ied. This is because VSA performs an over-approximation in
value-set construction and the missing context limits the capa-
bility of VSA with respect to reasoning memory regions or off-
sets within a region. Take the a-loc indicated by [eax+0x4]

(>, >, >) as an example. Without the complete execution
context of the crashing program, VSA conservatively assumes
eax could equal to any value. Thus, memory [eax+0x4]

could refer to any memory regions with an arbitrary offset

0x8b

push eax

0x8b

A Learning Model (Deep Neural Network)

S

… mov eax, [esp+0xc] call [eax]

0x44 0x24 0x0c 0xff 0x10

S H

S: Stack H: Heap G: Global

0x67…

…

A sequence of
instructions

Memory
regions tied to

instructions

(a) A neural network taking machine code as its input.

0x8b

push eax

0x8b

A Learning Model (Deep Neural Network)

S

… mov eax, [esp+0xc] call [eax]

0x44 0x24 0x0c 0xff 0x10

S H

S: Stack H: Heap G: Global

0x67…

…

A sequence of
instructions

Memory
regions tied to

instructions

EIEI: encoded
instruction EI EI…

(b) A neural network taking as input encoded instructions.

Figure 2: Two neural networks that identify memory region
accesses pertaining to each instruction by taking as input a
sequence of machine code and a sequence of encoded instruc-
tions respectively.

indicated by the symbol >. As is shown in the instruction
in line 13, the value of [eax+0x4] is assigned by a value
from a global region. Therefore, the value set tied to this
a-loc can be represented as ([0x2, 0x2], ⊥, ⊥). From
the a-locs identified from the truncated trace along with their
value set, we follow the aforementioned approach to examine
value set intersection, and illustrate the alias and non-alias
relationships in the lower triangular portion of the matrix
shown in Table 1a. As we can easily observe, without the full
execution trace, VSA over-approximates value sets tied to
a-locs, and conservatively deems many memory pairs as may-
alias relationships. Since may-alias represents uncertainty
relationship, Table 1a illustrates them as the question symbol

‘?’. Using such results to derive the data flow for software
crash diagnosis, it is not difficult to observe that a security
analyst can barely yield any useful results or in other words
pinpoint the root cause of the program crash for the simple
reason that VSA has the limited capability in tracking down
the memory alias.

3 Technical Approach

To address the problem above, we propose a technical ap-
proach driven by a deep neural network. In this section, we
first discuss why deep learning could potentially facilitate
VSA and thus improve software crash analysis. Second, we
briefly describe neural network architectures commonly used
in other binary analysis tasks. Third, we discuss the limita-

USENIX Association 28th USENIX Security Symposium 1791

tion of these existing neural networks and then specify how to
design a new neural architecture to better tackle our problem.
Finally, we present the detail of our new neural architecture
and specify how to integrate it into conventional VSA.

3.1 Overview

Recall that, when a crashing trace is incomplete, VSA exhibits
an insufficient capability in alias analysis and thus fails root
cause diagnosis. As is demonstrated above, this is because
the missing context restricts the ability of VSA to determine
the region of memory accesses for some instructions. To
address this pitfall, we leverage a deep neural network to
enhance VSA with the ability to infer memory region(s) for
instructions. In the following, we describe the rationale be-
hind this idea and illustrate why it could benefit the diagnosis
of software crashes.
Rationale behind our idea. In many previous applications
(e.g., speech recognition [24] and API generation [25]), it has
been demonstrated that some sequence-to-sequence neural
network architectures can be used to learn patterns from a se-
quence of inputs, thus facilitating the determination of a label
for each individual input. As a result, in order to augment con-
ventional VSA with the ability to infer the memory region(s)
that each instruction refers to, intuition suggests that we can
view an execution trace as a sequence of machine code or in-
structions, partition memory into disjoint regions (e.g., stack,
heap and global), treat each region as an individual label tied
to each instruction and eventually use a sequence-to-sequence
deep neural network to predict that label for each instruc-
tion. For example, given the instruction push 0x68732f2f

represented by machine code [0x68, 0x2f, 0x2f, 0x73,

0x68], we could determine the stack region is tied to this in-
struction by using either of the two designs shown in Figure 2.
As is depicted in the figure, the two designs take the input dif-
ferently, one with machine code as the input directly to a deep
learning model and the other with the encoded instructions as
the input to a model. In Section 3.3, we compare these two
designs and describe why we choose one over the other. In
Section 4, we show their performance difference.
Effect upon root cause diagnosis. With the augmentation
above, VSA could typically perform better alias analysis and
thus benefit the diagnosis of a software crash. We illustrate
this by again taking for example the instruction trace shown
in Figure 1. Recall that, without the complete execution
context, conventional VSA cannot determine the memory
region that eax refers to. Therefore, it assumes [eax] and
[eax+0x4] could represent any memory regions, assigns eax
and eax+0x4 with value-set (>, >, >) and eventually
fails the root cause diagnosis of that crash.

Given the sequence of the instructions tied to the crashing
trace, assume a deep neural network could correctly infer
that, the register eax at line 6 refers to a memory region at
the heap. Then, VSA could assign eax with value-set (⊥,

⊥, [X, X]) where [X, X] denotes an unknown address on
the heap. With this, VSA could further update the value sets
for corresponding a-locs. We show the updated value sets
in Table 1b under the column “Incomplete Trace with DL”.
As we can observe, the memory reference [eax] at line 12

and 18 are aliased to each other because they both refer to
the same memory address [X, X] on the heap. With this
alias analysis result, VSA could quickly assist backward taint
in tracking down the instruction at line 12 – the root cause
of the crash – even though this crashing trace is partial and
incomplete.

3.2 Existing Neural Architectures

To perform binary analysis with deep learning, previous re-
search typically utilized three types of recurrent neural net-
works (RNNs) – vanilla RNN [33], long short-term memory
(LSTM) [22] and gated recurrent units (GRU) [13]. Here, we
briefly describe them in turn.

3.2.1 Vanilla Recurrent Neural Network

A vanilla RNN (RNN for brevity) is specialized for processing
a sequence of values x(1), . . . ,x(t). When trained to perform a
prediction from the past sequence of inputs, it typically maps
the sequence to a fixed length vector h(t) through a function
g(t):

h(t) = g(t)(x(t),x(t−1),x(t−2), . . . ,x(2),x(1)),

= f (h(t−1),x(t);θ) .

As we can observe from this equation, the function g(t) takes
the whole past sequence as input and produces a summary h(t)

for that sequence. In an RNN, h(t) refers to a hidden state. As
is illustrated in Figure 3a, an RNN can be unfolded as a chain
structure where each hidden state is connected to the previous
one [23]. As such, g(t) can be factorized into the repeated
application of a function f , which controls the transition from
the previous hidden state to the next one (i.e., the recurrent
neuron). For example, assuming the length of the chain to be
3 – indicating a finite number of hidden states – we can then
obtain

h(3) = f (h(2);θ) ,

= f (f (h(1);θ);θ) .

To make predictions using the chain structure depicted in
Figure 3a, an RNN follows a forward propagation in which
it begins with an initial state h(0) and then utilizes the update
equations below to compute the prediction ŷ(t) accordingly.

a(t) = Wh(t−1)+Ux(t)+b ,

h(t) = tanh(a(t)) ,

o(t) = Vh(t)+ c ,

ŷ(t) = softmax(o(t)) .

1792 28th USENIX Security Symposium USENIX Association

Unfold

mov ebp, esp

0x89 0xe5 0x89

mov ebp, esp

……

……

WE WE

0xe5

WE

x

h

ŷ

L

y

U U U

W W W W
V V V

x(t−1) x(t)

h(t)h(t−1)

ŷ(t−1) ŷ(t)

y(t)y(t−1)

L(t−1) L(t)

…

…

…

…

…

…

……

…

…

……

…

…

…

…

…

…

……

… …

……

… …

(a) The Vanilla RNN.

…………

…

…

0x67 0xff 0x10… …

WE WE WE

0x89 0xe5…

WE WE

… …

…

LC LCLC

call [eax] mov ebp, esp
IE IE

x
(t−1)
i−1 x

(t)
i−1 x

(t+1)
i−1 x

(t+1)
i+1x

(t)
i+1

h
(t)
i+1 h

(t+1)
i+1h

(t+1)
i−1

h
(t)
i−1h

(t−1)
i−1

Ei−1 Ei+1Ei

ŷi−1 ŷi+1ŷi

yiyi−1 yi+1

Li+1LiLi−1

…

…

…

…

…

…

… …

…
… …

… …

… …

……

(b) The hierarchical LSTM.

…

…

…

…

…… …

…

…

…

0x67 0xff 0x10… …

WE WE WE

0x89 0xe5…

WE WE

… …

…

call [eax] mov ebp, esp

… …

x
(t−1)
i−1 x

(t)
i−1 x

(t+1)
i−1 x

(t+1)
i+1x

(t)
i+1

Ei−1 Ei+1Ei

ŷi−1 ŷi+1ŷi

−−−→
h

(t−1)
i−1

−−→
h

(t)
i−1

−−−→
h

(t+1)
i−1

−−−→
h

(t+1)
i+1

−−→
h

(t)
i+1

←−−
h

(t)
i+1

←−−−
h

(t+1)
i+1

←−−−
h

(t+1)
i−1

←−−−
h

(t−1)
i−1

←−−
h

(t)
i−1

……

… …

… … …

……

… …

……

IE IE

(c) The bi-directional hierarchical LSTM.

Figure 3: Recurrent neural networks with various architectures serving for different purposes. Note that “LC” indicates LSTM
cell, “IE” stands for the embedding for each instruction and “WE” refers to the word embedding.

Here, bias vectors b and c are parameters. tanh(Wh(t−1)+
Ux(t)+ b) is the detailed form of the recurrent neuron f in
which tanh is an activation function [54]. Softmax refers to
the softmax classifier [10]. Along with the weight matrices U ,
V and W , pertaining to input-to-hidden, hidden-to-output, and
hidden-to-hidden connections respectively, the bias vectors
can be learned by minimizing the loss function described
below

L(t) = L(x(1),x(2), ...,x(t),y(1),y(2), ...,y(t))

= ∑
t

L(t)

=−∑
t

logpmodel(y
(t)|x(1),x(2), ...,x(t)) ,

where pmodel(y(t)|x(1), . . . ,x(t)) is the probability from the pre-
diction vector ŷ(t) corresponding to the entry for the true label
vector y(t). Similar to other neural networks commonly used
(e.g., multi-layer perceptron [44] and convolution neural net-
works [32]), the minimization of the aforementioned loss
function can be achieved by using different kinds of opti-
mization algorithms (e.g., stochastic gradient descent [11],
ADAM [31], RMSprop [52]) with respect to the bias parame-
ters and weight matrices. The details of these optimization
algorithms can be found in [45].

3.2.2 Long Short-Term Memory

In the cybersecurity community, recent works have demon-
strated that a vanilla RNN has already demonstrated great
performance when performing binary analysis (e.g., [15, 48]).
However, it has been noted that, as is used in other applica-
tions such as speech recognition and machine translation,
such an ordinary recurrent architecture is not sufficient in pro-
cessing a long sequence of inputs. This is because a vanilla

RNN naturally struggles to remember information for long
periods of time or, in other words, suffers from derivative
vanishing and explosion problems [26]. To address this issue,
other works have used a long short-term memory (LSTM)
model to carry out binary analysis.

Similar to a vanilla RNN depicted in Figure 3a, LSTM also
has a chain structure. However, it replaces the aforementioned
hidden states with LSTM cells, and each cell carries a set of
parameters and a system of gating units that controls the
flow of information. In an LSTM network, each cell has a
state unit s(t) as well as three gating units – a forget gate unit
f (t), an external input gate unit g(t), and an output gate q(t) –
which together control the output h(t) of the LSTM cell via
the following equation

s(t) = f (t)� s(t−1)+g(t)�σ(Wh(t−1)+Ux(t)+b) ,

h(t) = q(t)� tanh(s(t)) .

Here, σ(·) denotes a sigmoid function [29] which sets a value
between 0 and 1, and � represents the element-wise multi-
plication. b, U and W respectively indicate the biases, input
weights, and recurrent weights into an LSTM cell. To com-
pute the gate units, one could follow the equations below

g(t) = σ(Wgh(t−1)+Ugx(t)+bg) ,

f (t) = σ(W f h(t−1)+U f x(t)+b f) ,

q(t) = σ(Wqh(t−1)+Uqx(t)+bq) ,

where {b f ,bg,bq}, {U f ,Ug,Uq} and {W f ,Wg,Wq} are re-
spectively: biases, input weights, and recurrent weights for
the forget, external input, and output gates. Similar to b, U
and W, they are also the parameters that can be learned via
the optimization algorithms mentioned above. Again, more
details of parameter computation can be found at [23].

USENIX Association 28th USENIX Security Symposium 1793

3.2.3 Gated Recurrent Units

As is described in previous research [15], gated recurrent
units (GRU) can also be used for some of binary analysis
tasks. GRU is an alternative LSTM which can also capture
long term dependency. The main difference between GRU
and LSTM is that GRU replaces the forget gate f and output
gate q in LSTM with one update gate. More specifically, it
integrates both forget and output gates into a single gating
unit u(t). As a result, it reduces the parameters that a network
has to learn and thus poses a lower computational cost. The
following equations indicate how to compute the output h(t)

of a GRU cell:

r(t) = σ(Wrh(t−1)+Urx(t)+br) ,

u(t) = σ(Wuh(t−1)+Uux(t)+bu) ,

h(t) = u(t)�h(t−1)+(1−u(t))� tanh(W(r(t)�h(t−1))+Ux(t)+b) .

Here, r(t) stands for a reset gate which controls the influ-
ence of the past sequences of inputs upon the current one.
{br,Ur,Wr} and {bu,Uu,Wu} are gate weights. Along with
the bias b and weights U, W, they need to be learned through
the aforementioned optimization algorithms.

3.3 Our Neural Network Architecture

As we described in Section 3.1, we could utilize two different
design mechanisms to predict the memory region that each
instruction refers to. For the design shown in Figure 2a, we
could simply leverage any of the aforementioned recurrent
neural networks to take as input the sequence of machine
code, learn the pattern hidden behind the machine code se-
quence and predict the memory region for each instruction.
As they have already demonstrated in other binary analy-
sis tasks (e.g., [48, 15]), we could expect this design could
perform reasonably well in memory region identification.
However, following the intuition described below, we do not
utilize this design. Rather, we develop our technique by using
the alternative design shown in Figure 2b.

Take for example the instruction sequence push ebp;

mov ebp, esp indicated by the byte sequence [0x55,

0x89, 0xe5]. An existing neural network model could take
this machine code sequence as input and make predictions
for their corresponding memory accesses based on the de-
pendency between the bytes. It is not too difficult to observe
that this simple approach neglects the semantics and contexts
of these instructions. As is described in Section 2, in binary
analysis, the semantics and contexts of instructions could
be used as indicators to infer the memory accesses tied to
instructions. Therefore, intuition suggests that it could be
potentially beneficial for memory region identification if we
could build a neural network with the ability to capture not
only the dependency between the bytes but also that between
instructions.

Inspired by this, we choose the design depicted in Figure 2b
and build a hierarchical LSTM architecture. We depict the
structure of this learning model in Figure 3b. As we can
observe, similar to existing neural networks used for other
binary analysis tasks, it first maps each byte into a vector by
using a word embedding mechanism [9]. Then, it groups the
bytes per each instruction and utilizes an embedding network
to convert each group of bytes into an instruction embedding
(i.e., an encoded vector). Taking the instruction embedding as
the input, our neural architecture further employs a sequence-
to-sequence network [50] to predict the memory region tied
to each instruction.

In comparison with the aforementioned off-the-shelf recur-
rent architectures largely adopted by other binary analysis
tasks, the proposed hierarchical LSTM architecture is com-
posed of two networks. The embedding network models
the correlation of bytes in one instruction and the sequence-
to-sequence network captures the dependency between in-
structions. By designing the model structure in this fashion,
our neural network model is able to perform memory access
predictions at the instruction level and learn the dependency
between and within instructions at the same time.

However, it is not difficult to note that this new recurrent
architecture cannot represent a backward analysis procedure,
where the memory region(s) tied to an instruction is deter-
mined by the consecutive instructions. Yet we note that this
backward analysis is feasible. To illustrate this, we take the
following execution trace as an example.
00015670 <malloc>:

53 push ebx

...

89 44 24 04 mov DWORD PTR [esp+0x4],eax

e8 6d b1 fe ff call 800 <_libc_memalign@plt>

83 c4 18 add esp,0x18

5b pop ebx

c3 ret

As is illustrated above, the trace indicates the instructions
and corresponding machine code executed while invoking
the malloc function. Here, the highlighted instruction and
machine code indicate the last definition of [eax] prior to
the return of the function call. Given that the call to malloc

places the return value in the register eax, indicating an ad-
dress on the heap, we can reversely perform inference and
conclude that the memory access tied to the highlighted in-
struction is within a heap region.

To enable our design with the capability of inferring mem-
ory regions in both forward and backward ways, we further up-
grade our hierarchical LSTM model to a bi-directional chain
structure [46]. As is shown in Figure 3c, our bi-directional
chain structure is applied to both the embedding network and
the sequence-to-sequence network. With respect to the em-
bedding network, our neural architecture combines a network
that moves forward, beginning from the start of the corre-
sponding byte sequence, with another network that moves
backward, starting from the end of the corresponding byte

1794 28th USENIX Security Symposium USENIX Association

sequence. Regarding the sequence-to-sequence network, our
architecture concatenates the output of a forward embedding
network with the output of a backward embedding network.
Then, it takes the concatenation as input and performs mem-
ory access prediction for each individual instruction based on
the sequence of instructions executed before and after that
instruction.

3.4 Detail of Our Neural Architecture
Here, we describe more details of our proposed neural net-
work architecture. More specifically, we specify how we
process a crashing trace, perform corresponding computation,
train the neural network and eventually utilize it to facilitate
VSA.
Padding and word embedding. As is described above, our
neural network utilizes a bi-directional embedding to encode
each instruction prior to making predictions for their memory
accesses. Before passing machine code to that embedding
network, we process them as follows.

Assume we have a crashing trace containing n instructions
I1:n. For each instruction Ii, it could be represented as m bytes
of machine code b(1:m)

i . For an x86 machine, instructions
do not share the same length. To design the same structure
of embedding networks for instructions, we therefore pad
instructions to a fixed length. To do this, we first convert
each individual byte into an integer based on its value (e.g.,
encoding machine code 55 to its integer form 85). Then,
we pad that instruction with integer 256. In this way, we
could ensure our padding does not introduce ambiguity to a
target instruction. After the padding, we also utilize a word
embedding to further process the padded crashing trace. In
our work, our word embedding converts each byte into a one-
hot vector with a dimensionality of 257. Then, the vector is
multiplied with a matrix projecting the byte into a new vector
(i.e., x(1:m)

i) typically with lower dimensionality.
Instruction embedding. For each instruction, we use a bi-
directional LSTM model to further encode its word embed-
ding and then generate an individual instruction embedding.
Technically speaking, we achieve this by integrating the out-
puts of the forward and backward networks. More specifically,
we utilize the following equations to compute the output of
the forward network.

−→
h(t)i = LSTM(

−−−→
h(t−1)

i ,x(t)i) ,

−→
Ei =

−−→
h(m)

i .

Similarly, we compute the output for the backward network
as follows. ←−

h(t)i = LSTM(
←−−−
h(t+1)

i ,x(t)i) ,

←−
Ei =

←−
h(1)i .

Here,
−→
Ei and

←−
Ei are the forward and backward embeddings of

the instruction Ii, respectively. LSTM denotes an LSTM cell

introduced above. As we can observe from the two sets of
equations above, the hidden representation of the first and last
bytes of the instruction, h(m)

i and h(1)i , contain the information
that flows from the previous and consecutive bytes.

To combine the outputs of both forward and backward
networks, we concatenate both representations in the form
of Ei = [

−→
Ei ,
←−
Ei]). Technically, it should be noted that we

can use one single embedding network for all instructions, or
employ different embedding networks for instructions. With
the consideration of lowering computational overhead, our
neural network architecture follows the first approach.
Sequence-to-sequence network. Given a sequence of in-
struction embeddings pertaining to the instructions in a crash-
ing trace, we then use a sequence-to-sequence model men-
tioned above to predict the label (i.e., , memory access re-
gion(s)) for each instruction. To be specific, the model takes
as input the instruction embeddings E1:n and utilizes a bi-
directional LSTM as the hidden layer of our neural architec-
ture 4. At the output layer of our neural network, it uses a
softmax classifier to assign a corresponding label for each
hidden state (i.e., the hidden representation of each instruc-
tion). Different from previous deep neural network used in
other binary analysis technique, which assigns a label to each
byte, our new architecture gives us the ability to attach an
individual prediction to each instruction.
Training strategy. Similar to the recurrent neural networks
summarized in Section 3.2, we also need to leverage afore-
mentioned optimization algorithms to estimate the parameters
for our neural network. In binary analysis tasks, the training
dataset is often significantly large, e.g., one execution trace
carries millions of lines of instructions. Using conventional
gradient descent algorithms – like stochastic gradient descent
– against a large data set, parameter estimation would experi-
ence significant computation overhead. To address this issue,
we take advantage of mini-batch gradient descent, a variation
of the gradient descent algorithm [28]. Technically speaking,
this approach splits the training dataset into small batches,
uses them to calculate model error through loss function
and updates model parameters accordingly. Compared with
other approaches, particularly stochastic gradient descent,
mini-batch provides a computationally efficient process and
enables parallel computations.

In addition to mini-batch gradient descent, we adopt
RMSprop [34] to accelerate the optimization process needed
for gradient descent computation. To be specific, we adjust
the learning rate by dividing it by an exponentially decaying
average of squared gradients. For more details, the reader
could refer to an unpublished article available at Geoff Hin-
ton’s class [34]. Last but not least, we also pad the remaining
sequences in the last batch with vectors where each element
equals 256. In this way, we can represent each batch as a

4Note that we can also use GRU as an alternative to LSTM for the
encoding network and the sequence to sequence network.

USENIX Association 28th USENIX Security Symposium 1795

matrix with fixed size, making it capable of being efficiently
processed at the same time.
Integration into VSA. Without the facilitation of a deep
learning model and the clue of which memory region an in-
struction accesses, VSA initializes a-locs and value-set with
(>, >, >), indicating the memory access in that instruc-
tion could refer to any memory regions. Using our deep
neural architecture introduced above, we could have the neu-
ral network output the memory region that instruction ac-
cesses (i.e., global, stack or heap). As is illustrated in Sec-
tion 3.1, with this capability, we could initialize a-locs and
value-set with ([X,Y], ⊥, ⊥), (⊥, [X,Y], ⊥) or (⊥,
⊥, [X,Y]), denoting a memory access in that instruction
could refer to a particular memory area ranging from X to
Y at a global, stack or heap region. Then, starting from the
first instruction in the crashing trace, VSA could regularly
perform forward analysis and update the value for X and Y.
For example, as we have shown in Table 1b, when analyzing
the instruction at line 6, our deep learning model initializes
eax with value-set (⊥, ⊥, [X,Y]) and VSA updates X and
Y with X=Y indicating the register eax refers to the memory
address X at the heap region.

4 Evaluation

In this section, we describe our implementation, the dataset
we utilized, set up our experiment, and summarize our ex-
perimental results. Through this evaluation, we seek to an-
swer the following questions. ¶ Does our problem require
a deep learning model or could it be resolved with conven-
tional machine learning techniques? · Can our proposed
technique correctly link memory regions to instructions or,
more precisely, identify the memory regions that instructions
dereference? ¸ Compared with commonly adopted recur-
rent neural architectures that take as input the raw machine
code, does the proposed neural network architecture (taking
encoded instructions as the input to a neural network) exhibit
better performance in terms of memory region identification?
¹ Can the memory regions identified improve the ability of
VSA with respect to memory alias analysis and thus bring the
positive impact upon the capability in software crash diagno-
sis?

4.1 Implementation
To answer the questions above, we must first train many deep
neural network architectures. This requires a large training
data set containing various instruction traces as well as the
memory reference tied to each instruction. To facilitate the
collection of the instruction traces as well as the correspond-
ing memory accesses, we first implemented a tracing system
which provides us with the ability to not only record the in-
structions that a target program executes but also the memory
region each instruction refers to. While both Intel PT and

ARM ETM could trace program execution, in this work, we
utilize Intel Pin [35] to complete the implementation of our
tracing system. This is because, in order to train a neural
network, we have to obtain the ground truth of which memory
regions instructions access but both hardware components do
not provide us with such a capability (i.e., recording memory
regions referred by instructions).

In addition to the tracing system, we customized a VSA
system which implemented an instruction parser using
libdisasm and 84 distinct instruction handlers to perform
value-set calculation. Going beyond alias analysis, the im-
plementation of our customized VSA system also contains
a backward taint component which takes the results of alias
analysis and performs the root cause diagnosis for a crashing
program. In total, our VSA implementation contains about
9,500 lines of C code. It should be noticed that the value-set
calculation for instructions with similar semantics (e.g., ja,
jb, jc) were taken care of by a unique handler.

Recall that our ultimate goal is to use a deep neural network
to facilitate VSA with respect to alias analysis and thus im-
prove the effectiveness of software crash diagnosis. Last but
not least, we therefore prototyped a neural network assisted
VSA system and named it after DEEPVSA. In our implementa-
tion, DEEPVSA first utilizes a pre-trained deep neural network
to predict memory accesses for each instruction. Then, it de-
termines non-aliasing relationships based on the prediction by
following the approach introduced in Section 3. Combining
the results of the conventional value-set analysis with this
non-aliasing analysis, our DEEPVSA finally performs back-
ward taint analysis and thus pinpoints the root cause of a
program crash. In this work, we ran all the aforementioned
systems on a 32-bit Linux system with Linux kernel 4.4.0
running on an Intel i7-6600 quad-core processor with 16 GB
RAM. We trained all the deep neural networks in this work on
2 Nvidia Tesla K40 GPUs and 4 Nvidia GTX 1080Ti GPUs
using the Keras package [14] and with Tensorflow [1] as
backend, amounting to about 2,000 lines of Python code.
Upon the acceptance of this submission, we will release all
of our systems along with our data set described below.

4.2 Data Set

As is mentioned above, we need to train many deep neural
networks with various execution traces along with their corre-
sponding memory accesses. In this work, we construct our
training data set by using 78 unique programs in a package
of GNU software – coreutils, ineutils and binutils.
More specifically, we ran these programs by following their
documentation and running examples. Using the aforemen-
tioned tracing system, we then gathered their execution traces
along with their memory accesses. In total, these 78 programs
generate a training data set with 96 distinct execution traces
covering 49,193,919 lines of instructions.

To test our neural network and demonstrate the effective-

1796 28th USENIX Security Symposium USENIX Association

Index Program Non-alias (400) Non-alias (800) Non-alias (3200) Non-alias (6400) Non-alias (12800) Root Cause
VSA DEEPVSA VSA DEEPVSA VSA DEEPVSA VSA DEEPVSA VSA DEEPVSA VSA DEEPVSA

1 coreutils-8.4 66.58% 88.28% 66.58% 88.28% 66.58% 88.28% 66.58% 88.28% 66.58% 88.28% 3 3
2 coreutils-8.4 1.25% 33.09% 1.25% 33.09% 1.25% 33.09% 1.25% 33.09% 1.25% 33.09% 3 3
3 coreutils-8.4 62.77% 93.84% 62.77% 93.84% 62.77% 93.84% 62.77% 93.84% 62.77% 93.84% 3 3
4 nginx-1.4.0 68% 99% 68% 99% 68% 99% 68% 99% 68% 99% 3 3
5 nullhttpd-0.5.0 67.47% 72.30% 67.47% 72.30% 67.47% 72.30% 67.47% 72.30% 67.47% 72.30% 3 3
6 DXFScope-0.2 6.17% 42.39% 6.17% 42.39% 6.17% 42.39% 6.17% 42.39% 6.17% 42.39% 3 3
7 tiff-3.8.2 0.58% 30.50% 0.58% 30.51% 0.58% 30.51% 0.58% 30.51% 0.58% 30.51% 3 3
8 unrtf-0.19.3 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 3 3
9 gdb-6.6 23.03% 84.64% 23.34% 84.70% 41.13% 91.83% 41.13% 91.83% 41.13% 91.83% 3 3

10 openjpeg-2.1.1 11.93% 14.38% 11.93% 14.38% 11.93% 14.38% 92.67% 95.13% 92.67% 95.13% 3 3
11 python-2.7 65.00% 91.26% 71.14% 97.49% 71.14% 97.49% 71.14% 97.49% 71.14% 97.49% 3 3
12 poppler-0.8.4 0.00% 39.43% 0.00% 39.43% 0.00% 39.43% 60.60% 98.56% 60.60% 98.56% 3 3
13 htmldoc-1.8.27 0.077% 30.48% 0.077% 30.48% 0.077% 30.48% 0.077% 30.48% 0.077% 30.48% 3 3
14 unalz-0.52 0.05% 39.31% 0.05% 39.31% 0.05% 39.31% 0.05% 39.31% 0.05% 39.31% 3 3
15 psutils-p17 0.17% 45.20% 0.17% 45.20% 48.84% 90.44% 48.84% 90.44% 48.84% 90.44% 7 3
16 libpng-1.2.5 29.72% 80.76% 29.72% 80.76% 29.72% 80.76% 29.72% 80.76% 29.72% 80.76% 3 3
17 gas-2.12 0.02% 49.41% 0.02% 49.41% 0.02% 49.41% 0.02% 49.41% 0.02% 49.41% 3 3
18 SQLite-3.8.6 48.83% 96.82% 48.83% 96.82% 48.83% 96.82% 48.83% 96.82% 48.83% 96.82% 7 3
19 pcal-4.7.1 22.74% 85.42% 22.74% 85.42% 22.75% 85.43% 22.75% 85.43% 22.75% 85.43% 7 3
20 LaTeX2rtf-1.9 9.93% 10.55% 9.93% 10.55% 19.68% 30.16% 19.68% 30.16% 19.68% 30.16% 7 3
21 gif2png-2.5.2 43.56% 95.64% 43.56% 95.64% 43.56% 95.64% 43.56% 95.64% 43.56% 95.64% 7 3
22 abc2mtex-1.6.1 22.38% 71.54% 22.38% 71.54% 22.38% 71.54% 22.38% 71.54% 22.38% 71.54% 3 3
23 O3read-0.0.3 28.13% 75.47% 28.13% 75.47% 28.13% 75.47% 28.13% 75.47% 28.13% 75.47% 7 3
24 gdb-7.5.1 0.02% 55.30% 0.02% 55.30% 42.09% 93.56% 42.09% 93.56% 42.09% 93.56% 7 3
25 podofo-0.9.4 2.00% 22.15% 2.00% 22.15% 2.00% 22.15% 2.00% 22.15% 2.00% 22.15% 3 3
26 nasm-0.98.38 0.35% 44.78% 0.35% 44.78% 0.35% 44.78% 57.34% 99.24% 57.34% 99.24% 3 3
27 corehttp-0.5.3a 0.00% 40.98% 0.00% 40.98% 0.00% 40.98% 58.48% 94.40% 58.48% 94.40% 3 3
28 corehttp-0.5.3.1 0.00% 41.21% 0.00% 41.21% 0.00% 41.21% 58.08% 95.22% 58.08% 95.22% 3 3
29 unrar-3.9.3 21.29% 82.41% 21.29% 82.41% 21.29% 82.41% 21.29% 82.41% 21.29% 82.41% 7 3
30 prozilla-1.3.6 4.98% 56.53% 4.98% 56.53% 4.98% 56.53% 32.06% 77.97% 32.06% 77.97% 7 3
31 python-2.7.5 1.00% 3.01% 1.00% 3.01% 1.00% 3.01% 1.00% 3.01% 1.00% 3.01% 3 3
32 html2hdml-1.0.3 1.92% 34.55% 1.92% 34.55% 1.92% 34.55% 1.92% 34.55% 1.92% 34.55% 3 3
33 mcrypt-2.5.8 14.95% 53.02% 22.83% 59.84% 63.36% 100% 63.36% 100% 63.36% 100% 7 3
34 putty-0.66 5.06% 24.67% 5.06% 24.67% 5.06% 24.67% 18.58% 54.09% 18.58% 54.09% 3 3
35 mp3info-0.8.5a 1.9% 55.58% 1.9% 55.58% 3.82% 55.92% 3.82% 55.92% 3.82% 55.92% 3 3
36 LibSMI-0.4.8 70.44% 94.53% 70.44% 94.53% 70.44% 94.53% 70.44% 94.53% 70.44% 94.53% 3 3
37 JPegToAvi-1.5 0.00% 55.20% 0.00% 55.20% 0.00% 55.20% 0.00% 55.20% 13.81% 67.81% 3 3
38 aireplay-ng-1.2 4.46% 50.80% 4.96% 51.30% 49.17% 88.57% 49.17% 88.57% 49.17% 88.57% 7 7
39 ClamAV-0.93.3 NA NA NA NA NA NA NA NA NA NA 7 7
40 0verkill-0.16 NA NA NA NA NA NA NA NA NA NA 7 7

Total - - - - - - - - - - - 27(3) 37(3)
Average - 21.23% 57.49% 21.62% 57.84% 27.01% 62.79% 36.37% 72.07% 36.73% 72.40% - -

Table 2: The list of program crashes corresponding to memory corruption vulnerabilities. “Root cause” specifies whether the
result of alias analysis successfully facilitate the root cause identification of software crashes. The percentages under VSA and
DEEPVSA represent the amount of non-alias memory pairs identified. The number shown along with “non-alias” indicates the
length of the trace prior to the site of the root cause instruction.

ness of DEEPVSA in alias analysis and root cause diagnosis,
we exhaustively searched the Exploit Database Archive [47]
and randomly selected 40 distinct vulnerability reports corre-
sponding to 38 unique versions of software running on Linux.
Following the description of each report, we compiled vul-
nerable programs5, configured the underlying systems and
ran the PoC programs tied to corresponding vulnerabilities.
In this way, we triggered software failures, recorded their
crashing traces and treated these traces as our testing data set.
Using these crashing traces, we benchmarked DEEPVSA and
examined the effectiveness of our proposed technique. Recall
that the execution trace is stored in a circular buffer with a

5In other binary analysis research works using deep learning, the binary
is typically compiled with various optimization options. In this work, we
compiled programs mostly with O2 option because many vulnerabilities
cannot be reproduced if compiled with other options. Note that this does
not influence the generalization of our approach because O2 is the default
compilation options for most software.

limited size (4KB) and that buffer is shared by multiple run-
ning processes. Since different lengths of an instruction trace
stored in that shared buffer might influence memory alias
identification, we retained different lengths of instructions for
each of our test cases. This gives us the ability to identify the
optimal memory size needed for a running process.

In Table 2, we present all the crashing programs selected6.
From the table, we have the following observations. First
of all, we can observe that the programs listed in the table
has less overlaps with the programs in our training data set.
This implies the dissimilarity between our training and testing
data sets and thus avoids the possibility of using the same or
similar data for model training and testing. Considering pro-
grams could invoke functions in the same shared library (e.g.,
glibc), and too many of such invocations could potentially

6Note that we present the corresponding CVE/EDB-IDs as well as the
length of each crashing trace in Appendix.

USENIX Association 28th USENIX Security Symposium 1797

Global Heap Stack Other

Precision

HMM 67.99% 53.99% 74.47% 86.56%
CRF 15.93% 12.31% 62.10% 71.82%

Bi-RNN 98.63% 72.74% 95.30% 97.39%
Bi-GRU 90.71% 78.44% 95.11% 98.40%

Bi-LSTM 89.75% 78.47% 94.98% 97.92%
Our Model 96.98% 94.62% 98.92% 99.32%

Recall

HMM 77.52% 39.31% 81.40% 85.28%
CRF 10.23% 17.85% 51.95% 88.71%

Bi-RNN 84.17% 83.72% 95.96% 95.43%
Bi-GRU 88.04% 87.46% 97.59% 95.84%

Bi-LSTM 91.71% 86.53% 97.16% 95.37%
Our Model 86.67% 95.99% 98.59% 99.45%

F1 Score

HMM 72.44% 45.50% 77.78% 85.92%
CRF 12.46% 14.57% 56.57% 79.38%

Bi-RNN 90.83% 77.85% 95.63% 96.40%
Bi-GRU 89.35% 82.71% 96.33% 97.10%

Bi-LSTM 90.72% 82.30% 96.06% 96.63%
Our Model 91.54% 95.30% 98.75% 99.39%

Table 3: The overall performance of different machine learn-
ing models.

introduce the risk of using the same data for training and test-
ing, we further examine the instruction traces in the testing
data set with those in the training. We discover that there are
14.02% of overlapping functions, appearing both in our test
cases and the cases in our training set. In order to ensure our
training and testing data sets do not share instructions, we
eliminate the commonly shared instruction sequences from
the training data set. This further avoids the situation where
we perform alias analysis against a target crashing trace by
using the model trained with itself.

Second, we can observe, the programs in the table cover
a wide spectrum, ranging from sophisticated software like
gdb-7.5.1 with over 1.6M lines of code to lightweight soft-
ware such as o3read-0.0.3 and corehttp-0.5.3.1 with
less than 1K lines of code. To some extent, this diversity
of our test cases imposes different levels of difficulty upon
alias analysis and root cause diagnosis. Last but not least,
we manually examine the memory access behaviors and ob-
serve that our test corpus encloses a variety of memory access
behaviors, manifested as different amounts of memory deref-
erences across four disjoint memory regions (see Table 4
in Appendix). It should be noted that apart from the three
memory regions that conventional VSA typically separates,
we introduce ‘other’ which represents the memory region
pertaining to the text and global sections tied to dynamic li-
braries. This is an useful addition because the involvement
of this region could allow us to extend conventional VSA to
consider the following two memory access practices. ¶ An
instruction dereferences a memory cell which held a piece of
read-only data in the text section. · A running process and
dynamic library do not share the same global section and an
instruction of the process accesses a memory cell indicating
the global section of the dynamic library.

4.3 Experimental Setup
Using the systems mentioned in Section 4.1 as well as the data
sets described in Section 4.2, we set up a series of experiments
to evaluate our proposed technique and thus answer the four
questions presented above.

To answer the first three questions (¶, · and ¸) men-
tioned at the beginning of this section, we first trained 6
different machine learning models by using the training data
set mentioned above. As is specified in Table 3, two of them
are conventional machine learning models – Hidden Markov
Model (HMM) as well as Conditional Random Field (CRF).
While there are other machine learning approaches, such as
decision tree or logistic regression, which might also work for
our task, we select HMM and CRF as our baseline approaches
and compare them with our proposed deep learning technique.
This is because, by design, the approaches of our choice could
take a sequence of input and yield a sequence of predictions,
whereas other traditional machine learning approaches need
to involve sophisticated feature engineering efforts in order to
process a sequence of data input. In addition to conventional
learning models, Table 3 depicts our proposed neural network
architecture that takes instruction embedding as the input to
a neural network as well as three aforementioned neural ar-
chitectures that take as input the raw machine code. In this
work, we compare the performance of these different neural
architectures and examine whether the design of feeding in-
structions to a neural network outperforms that of taking raw
machine code7.

To obtain the performance measure of each machine learn-
ing models mentioned above, we applied the learning models
to the aforementioned testing data set, used them to predict
the memory region each instruction refers to and compare
their prediction with the true labels (i.e., the memory regions
a corresponding instruction truly refers to). For each memory
access in the execution traces of the testing data set, we define
a prediction as a correct identification if and only if the pre-
dicted memory regions aligns the true memory regions that
the corresponding instruction refers to. With this definition,
we further computed the precision, recall and F1 score for
each machine learning model. To be more specific, we use
the equations PM

⋂
TM

PM
, PM

⋂
TM

TM
and 2 · precision·recall

precision+recall to com-
pute precision, recall and F1 score, respectively. Here, PM
represents the set of memory accesses predicted to refer to
memory region M where M ∈ {stack,heap,global,other}.
TM denotes the set of memory accesses truly referencing
memory region M.

To explore the answer to our last question (¹), we further
set up our experiment as follows. For each trace in our test-
ing data set, we first applied our proposed neural network
model to predict the memory regions tied to corresponding

7It should be noted that all the neural networks shown in the table are bi-
directional. This is because previous research [48] indicates the bi-directional
structure outperforms those designed with a single-directional chain particu-
larly when using deep learning to performing binary analysis.

1798 28th USENIX Security Symposium USENIX Association

instructions. With these prediction results, we then utilized
DEEPVSA. As is mentioned above, DEEPVSA is an extension
of VSA. It is built with the additional ability to take the re-
gion prediction and determine non-alias relationships that the
conventional VSA originally fails to identify. In addition, it
leverages the results of alias analysis to perform backward
taint analysis and thus pinpoint the root cause of the cor-
responding crash. Using these capabilities, our experiment
compares the non-alias pairs that DEEPVSA and conventional
VSA identified. Then, using the alias analysis results that
DEEPVSA and conventional VSA derive, our experiment fur-
ther examines their corresponding capability in facilitating
the root cause diagnosis. When conducting our experiments,
we also investigate the impact of the instruction trace length
upon the non-alias identification. To be specific, we preserve
different lengths of instructions prior to the root cause site
(i.e., 200, 400, 800, 1600, 3200, 6400, 12800 and 19600) and
measure how different lengths impact alias identification. It
should be noted we utilize 4KB of execution trace for our
study if hardware cannot enclose the root cause site in its
circular buffer.

4.4 Experimental Results

Performance of machine learning models. Table 3 shows
the precision, recall and F1 score of various machine learn-
ing models, which demonstrate their capability of assigning
correct memory regions to instructions. As we can easily
observe, all deep neural network models significantly outper-
form traditional machine learning models. This is because a
crashing trace is relatively long and deep learning approaches
naturally have stronger capability than HMM and CRF in
learning the patterns hidden in a long sequence. Of all the
neural network models, we can also observe that our proposed
neural network model (specified as ‘our model’) exhibits the
highest classification performance (i.e., with the highest F1
score). This indicates that, in comparison with the model tak-
ing as input the raw machine code, a learning model that takes
instruction embedding as the input to a neural network could
better capture the dependency hidden between instructions.

From Table 3, we also find that, in comparison with other
deep learning models, our model typically demonstrates the
performance improvement with only about 1%∼ 12%. How-
ever, this does not imply that the utility of our model is only
slightly better than those of other neural network models. In
our binary analysis task, the crashing traces are relatively long.
Using a neural network with even only 0.1% of improvement
in precision, for example, we could reduce the amount of false
positives or negatives by thousands. Given a long crashing
trace containing hundreds of thousands of instructions, our
performance improvement indicates a significant reduction in
the memory regions mistakenly assigned by neural networks.
Performance of memory alias analysis. In addition to show-
ing the superior performance of our model when conducting

200 400 800 1600 3200 6400 12800 19600

Trace length prior to the site of the root cause instruction

15

25

35

45

55

65

75

A
ve

ra
ge

am
ou

nt
of

no
n-

al
ia

s
pa

ir
s

(%
)

VSA

DEEPVSA

Figure 4: The average amount of non-alias memory pairs vs. the
length of instructions retained.

memory region identification, we demonstrate the perfor-
mance of our model in terms of its ability to facilitate VSA
with respect to memory alias analysis. In Table 2, we spec-
ify the percentage of non-alias pairs that VSA and DEEPVSA

track down when given different lengths of crashing traces
(400, 800, 3200, 6400, 12800). As we can observe, on aver-
age, conventional VSA tracks down about 21.23%∼ 36.73%
non-alias pairs compared with 57.49%∼ 72.40% of non-alias
pairs identified by DEEPVSA. This is more than a 35% increase
in non-alias memory reference determination. These results
perfectly reflect how conventional VSA generally fails to ac-
curately identify memory regions when execution traces are
incomplete. With the assistance of a deep neural network,
VSA’s ability to perform memory region identification can be
enhanced resulting in a significant benefit for memory alias
analysis.

In Table 2 and Figure 4, we further specify the impact
of the execution trace length upon the ability to perform
alias analysis. We observe that, for some crashing programs
(e.g., poppler-0.8.4 and JPegToAvi-1.5), the length of
the execution trace stored in the circular buffer influences the
capability of VSA and DEEPVSA upon determining memory
alias relationships. With the increase in the length of an execu-
tion trace, we discover that both VSA and DEEPVSA demon-
strate the improvement in their ability to analyze memory
alias. This is because both techniques rely upon an execution
context to perform alias analysis and a longer execution trace
provides them with more abundant contexts. In addition, we
observe that the capability of performing alias analysis con-
verges when the length of the instructions (prior to the root
cause instruction site) exceeds 12,800. This indicates that,
even though DEEPVSA significantly improves VSA’s capabil-
ities for alias analysis, it does not completely address alias
identification issues for a crashing trace. We believe there is
still a room for future exploration in this space, particularly
because VSA utilizes both memory regions and offsets to
perform alias analysis while DEEPVSA only simply extends
VSA with the consideration of coarse-grained memory region
differences.

USENIX Association 28th USENIX Security Symposium 1799

Recall that our DEEPVSA performs alias analysis by using
a deep learning approach which cannot predict a memory
region access with 100% of accuracy. As a result, along with
the influence of a trace length upon alias analysis, we also
investigate if inaccurate prediction actually causes DEEPVSA
to incorrectly – or mistakenly – track down a non-memory
alias pair and thus fail root cause diagnosis. We discover that,
similar to conventional VSA, DEEPVSA exhibits zero error
rate across all test cases shown in the table. This implies that
DEEPVSA does not introduce unsoundness to alias analysis
while our proposed deep neural network might mistakenly
assign an incorrect region to an instruction. We believe the
reason behind this surprising observation is as follows. Given
a crashing trace, there is only a tiny portion of memory ref-
erences that are truly aliased to each other. Even though
our deep learning model mistakenly predicts regions for in-
structions, and DEEPVSA takes that inaccurate prediction as a
strong indicator for determining non-alias relationships, the
possibility of propagating that error to alias analysis is still
extremely low.
Performance of root cause diagnosis. Going beyond speci-
fying the facilitation of alias analysis, Table 2 also illustrates
how the analysis of memory alias benefits backward taint anal-
ysis and thus the root cause identification. As we can observe
from the table, compared with VSA – with which backward
taint could successfully pinpoint the root cause of the crash
for 27 test cases – DEEPVSA demonstrates superior perfor-
mance in facilitating root cause diagnosis. We can observe
that, with only 3 test cases, DEEPVSA fails to help backward
taint to track down the root cause of a software crash. To
understand the reasons behind the failure, we look closely
into the instructions tainted. With respect to 0verkill-0.16
and ClamAV-0.93.3, we note that the failure results from
the nature of the hardware which has only 4KB memory stor-
age to record all execution traces. Even if we allocate this
entire storage to the crashing process, the hardware is still not
able to enclose the instructions pertaining to the root cause of
the crash. Regarding the test case aireplay-ng-1.2beta3,
we discover the crashing program invoked the system call
sys read which writes a data chunk to a certain memory
region. Since both the size of the data chunk and the address
of the memory are specified in registers, which value-set anal-
ysis fails to restore, sys read intervenes the propagation of
data flow, making the output of DEEPVSA less informative to
failure diagnosis.

5 Related Work

This research work mainly focuses on analyzing memory alias
in the binary level. Regarding the techniques we employed
and the problems we addressed, the lines of works most
closely related to our own include machine learning in binary
analysis and memory alias analysis for assembly. In this
section, we summarize previous studies and discuss their

limitation in turn.
Memory alias analysis for assembly. There is a long his-
tory of research about analyzing memory alias in binary code.
As pioneering research works, Debray et al. [21] and Ci-
fuentes et al. [16] both propose the same type of technical
approaches that compute the values a set of registers can hold
at each program point and then use the values held in the
registers to determine alias. Considering such techniques
determine only the possible values held in each register, but
not reason about values across memory operations, Brum-
ley et al. propose a logic-based approach which derives all
possible alias relationships by finding an over-approximation
of the set of values that each memory location and register
can hold at each program point [12]. At the high level, this
logic-based approach is similar to value set analysis [7, 6, 42]
because they both perform value reasoning across memory op-
erations. However, different from the work proposed in [12],
value set analysis neither assumes that all memory cells and
register locations must be of a single fixed width, nor assumes
reads and writes have to be no overlapping. As such, value set
analysis is more practical for real-world applications, whereas
the logic-based approach [12] has been tested only against
simple toy examples.

In a recent research work [19], Cui et al. propose a prac-
tical debugging system REPT. Technically, it first ignores
memory alias in data flow analysis and then utilizes an er-
ror correction mechanism to rectify the mistakes caused by
memory alias. This approach has demonstrated its effective-
ness and efficiency in dealing with some real world crashes.
However, as is stated in [19], it inevitably introduces inaccu-
rate analysis results. This is because the proposed correction
mechanism does not always catch the occurrence of memory
alias, which could sometimes result in incorrectness in root
cause diagnosis for a crashing program. In addition, similar
to value set analysis, incomplete execution trace imposes the
difficulty for REPT in performing alias analysis. In this work,
we proposed new deep-learning-based approach which not
only inherits the capability of VSA in providing high-fidelity
analysis results but more importantly enhances its ability to
analyze memory alias.
Machine learning in binary analysis. There is an extensive
body of work leveraging machine learning to perform binary
analysis. Technically speaking, they can be categorized into
two types – conventional machine learning based approaches
as well as deep learning based ones.

With respect to the works using conventional machine
learning techniques, their research focus is mainly on iden-
tifying the function boundary in the binary level. For ex-
ample, Rosenblum et al. utilize conditional random fields to
formulate function boundary identification [43] and demon-
strate decent performance in terms of pinpointing function
entry points. In a recent research work, Bao et al. propose
ByteWeight [8] which significantly improves the perfor-
mance for function boundary identification by using weighted

1800 28th USENIX Security Symposium USENIX Association

prefix trees.
Regarding the research works adopting deep learning tech-

niques, their research focus includes identifying function
boundary [48], pinpointing function type signature [15], track-
ing down similar binary code [56] and performing memory
forensics [49]. Using a bi-directional recurrent neural net-
work, Shin et al. improve function boundary identification
and achieve a nearly perfect performance with respect to
function boundary recognition [48]. Going beyond simply
identifying function boundary, Chua et al. explore recurrent
neural networks with respect to its ability to track down the
arguments and types of functions in binary [15]. In recent
work, deep learning techniques have also been utilized for
binary code similarity detection, in which Xu et al. employ
Multi-Layer Perception (MLP) to encode a control flow graph
and then use the encoding to pinpoint vulnerable code frag-
ments [56]. Last but not least, Song et al. use a graph based
deep learning approach to derive abstract representations for
kernel objects so that one could recognize those objects from
raw memory dumps efficiently [49].

In this work, we also use machine learning for binary anal-
ysis. Different from the aforementioned research, we however
focus on leveraging deep learning to improve memory alias
identification. Technically speaking, our work is also unique.
Unlike the works above, which mostly use an off-the-shelf
deep neural architecture, our work introduces a new recurrent
neural architecture, which takes the consideration of the data
dependency residing in binary code. As is shown in Section 4,
our proposed neural network significantly outperforms neural
networks largely adopted in other binary analysis tasks.

6 Conclusion

In this paper, we introduce a new deep neural network ar-
chitecture to facilitate value-set analysis for alias analysis
and thus improve the capability in software crash analysis.
We show that this new neural architecture can significantly
improve value-set analysis with respect to its capability in
handling memory alias analysis and benefit data flow analysis
in the context of postmortem program analysis. Since the
design of our proposed neural network architecture takes into
consideration not only the semantics of instructions but also
their contexts, it can better capture the dependency within
and between the instructions in a sequence of machine codes,
making alias identification more effective.

We implemented our proposed technique as DEEPVSA– a
deep neural network assisted tool for alias analysis and crash
diagnosis – and demonstrated its utility using real-world soft-
ware crashes covering about 1.6 million lines of instructions.
We showed that DEEPVSA can facilitate the determination of
non-alias relationships with no false positives and benefit the
diagnosis of program crashes. In addition, we demonstrated
that our newly designed neural network outperforms off-the-
shelf neural architectures. Following these findings, we safely

conclude deep learning can be used for the facilitation of
memory alias analysis and root cause diagnosis at the binary
level. We expect this work can inspire further advancements
in alias analysis and postmortem program analysis through
deep neural networks.

Acknowledgement

We would like to thank our shepherd Konrad Rieck and the
anonymous reviewers for their helpful feedback. This project
was supported in part by NSF grants CNS-1718459, TWC-
1409915. In addition, this work was partially supported by the
CLTC (Center for Long-Term Cybersecurity), and FORCES
(Foundations of Resilient CybErPhysical Systems) which
is supported by NSF under the grants CNS-1238959, CNS-
1238962, CSN-1239054 and CSN-1239166.

References

[1] ABADI, M., BARHAM, P., CHEN, J., CHEN, Z.,
DAVIS, A., DEAN, J., DEVIN, M., GHEMAWAT, S.,
IRVING, G., ISARD, M., ET AL. Tensorflow: a system
for large-scale machine learning. In Proceedings of the
11st USENIX Symposium on Operating Systems Design
and Implementation (OSDI) (2016).

[2] ARM. Embedded trace macrocell architecture specifica-
tion. http://www2.lauterbach.com/pdf/trace_

arm_etm.pdf, 2018.

[3] AUTHORS, A. The deepvsa project website. Anony-
mous link, 2019.

[4] BALAKRISHNAN, G., GRUIAN, R., REPS, T., AND
TEITELBAUM, T. Codesurfer/x86a platform for ana-
lyzing x86 executables. In Proceedings of the 14th In-
ternational Conference on Compiler Construction (CC)
(2005).

[5] BALAKRISHNAN, G., AND REPS, T. Analyzing mem-
ory accesses in x86 executables. In Proceedings of the
13rd International Conference on Compiler Construc-
tion (CC) (2004).

[6] BALAKRISHNAN, G., AND REPS, T. Wysinwyx: What
you see is not what you execute. ACM Transactions on
Programming Languages and Systems (2010).

[7] BALAKRISHNAN, G., AND REPS, T. W. Analyzing
memory accesses in x86 executables. In Proceedings
of the 13th International Conference on Compiler Con-
struction (CC) (2004).

[8] BAO, T., BURKET, J., WOO, M., TURNER, R., AND
BRUMLEY, D. Byteweight: Learning to recognize func-
tions in binary code. In Proceedings of the 23rd USENIX
Security Symposium (USENIX Security) (2014).

USENIX Association 28th USENIX Security Symposium 1801

http://www2.lauterbach.com/pdf/trace_arm_etm.pdf
http://www2.lauterbach.com/pdf/trace_arm_etm.pdf

[9] BENGIO, S., AND HEIGOLD, G. Word embeddings for
speech recognition. In Proceedings of the 15th Annual
Conference of the International Speech Communication
Association (ISCA) (2014).

[10] BISHOP, C. M. Pattern Recognition and Machine
Learning. Springer, 2006.

[11] BOTTOU, L. Large-scale machine learning with stochas-
tic gradient descent. In Proceedings of the 15th Interna-
tional Conference on Computational Statistics (COMP-
STAT) (2010).

[12] BRUMLEY, D., AND NEWSOME, J. Alias analysis for
assembly. In CMU-CS-06-180 (2006).

[13] CHO, K., VAN MERRIËNBOER, B., GULCEHRE, C.,
BAHDANAU, D., BOUGARES, F., SCHWENK, H., AND
BENGIO, Y. Learning phrase representations using
rnn encoder-decoder for statistical machine translation.
arXiv preprint arXiv:1406.1078 (2014).

[14] CHOLLET, F., ET AL. Keras. https://keras.io/,
2015.

[15] CHUA, Z. L., SHEN, S., SAXENA, P., AND LIANG,
Z. Neural nets can learn function type signatures from
binaries. In Proceedings of the 26th USENIX Security
Symposium (USENIX Security) (2017).

[16] CIFUENTES, C., AND FRABOULET, A. Intraprocedural
static slicing of binary executables. In Proceedings of
13rd the International Conference on Software Mainte-
nance (ICSM) (1997).

[17] CLAUSE, J., LI, W., AND ORSO, A. Dytan: a generic
dynamic taint analysis framework. In Proceedings of
the 2007 International Symposium on Software Testing
and Analysis (ISSTA) (2007).

[18] COWAN, C., PU, C., MAIER, D., WALPOLE, J.,
BAKKE, P., BEATTIE, S., GRIER, A., WAGLE, P.,
ZHANG, Q., AND HINTON, H. Stackguard: Automatic
adaptive detection and prevention of buffer-overflow
attacks. In Proceedings of the 7th USENIX Security
Symposium (USENIX Security) (1998).

[19] CUI, W., GE, X., KASIKCI, B., NIU, B., SHARMA, U.,
WANG, R., AND YUN, I. REPT: Reverse debugging
of failures in deployed software. In Proceedings of the
13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI) (2018).

[20] CUI, W., PEINADO, M., CHA, S. K., FRATANTONIO,
Y., AND KEMERLIS, V. P. Retracer: Triaging crashes
by reverse execution from partial memory dumps. In
Proceedings of the 38th International Conference on
Software Engineering (ICSE) (2016).

[21] DEBRAY, S., MUTH, R., AND WEIPPERT, M. Alias
analysis of executable code. In Proceedings of the 25th
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL) (1998).

[22] GERS, F. A., SCHRAUDOLPH, N. N., AND SCHMID-
HUBER, J. Learning precise timing with lstm recurrent
networks. Journal of machine learning research (2002).

[23] GOODFELLOW, I., BENGIO, Y., COURVILLE, A., AND
BENGIO, Y. Deep learning. MIT press Cambridge,
2016.

[24] GRAVES, A., MOHAMED, A.-R., AND HINTON, G.
Speech recognition with deep recurrent neural networks.
In Proceedings of the 38th IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP) (2013).

[25] GU, X., ZHANG, H., ZHANG, D., AND KIM, S. Deep
api learning. In Proceedings of the 24th ACM SIGSOFT
International Symposium on Foundations of Software
Engineering (FSE) (2016).

[26] HOCHREITER, S. The vanishing gradient problem dur-
ing learning recurrent neural nets and problem solu-
tions. International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems (1998).

[27] INTEL. Intel processor trace tools. https://

software.intel.com/en-us/node/721535, 2013.

[28] IOFFE, S., AND SZEGEDY, C. Batch normalization:
Accelerating deep network training by reducing internal
covariate shift. In Proceedings of the International
conference on machine learning (ICML) (2015).

[29] ITO, Y. Representation of functions by superpositions
of a step or sigmoid function and their applications to
neural network theory. Neural Networks (1991).

[30] KASIKCI, B., CUI, W., GE, X., AND NIU, B. Lazy
diagnosis of in-production concurrency bugs. In Pro-
ceedings of the 26th Symposium on Operating Systems
Principles (SOSP) (2017).

[31] KINGMA, D. P., AND BA, J. Adam: A method for
stochastic optimization. In Proceedings of the 3rd Inter-
national Conference on Learning Representation (ICLR)
(2015).

[32] KRIZHEVSKY, A., SUTSKEVER, I., AND HINTON,
G. E. Imagenet classification with deep convolutional
neural networks. In Proceedings of the 36th Annual
Conference on Neural Information Processing Systems
(NeurIPS) (2012).

[33] LECUN, Y., BENGIO, Y., AND HINTON, G. Deep
learning. nature (2015).

1802 28th USENIX Security Symposium USENIX Association

https://keras.io/
https://software.intel.com/en-us/node/721535
https://software.intel.com/en-us/node/721535

[34] LI, M., ZHANG, T., CHEN, Y., AND SMOLA, A. J.
Efficient mini-batch training for stochastic optimization.
In Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining
(KDD) (2014).

[35] LUK, C.-K., COHN, R., MUTH, R., PATIL, H.,
KLAUSER, A., LOWNEY, G., WALLACE, S., ET AL.
Pin: building customized program analysis tools with
dynamic instrumentation. In Proceedings of the 26th
ACM SIGPLAN Conference on Programming language
design and implementation (PLDI) (2005).

[36] MICROSOFT. /safeseh (safe exception handlers).
http://msdn2.microsoft.com/en-us/library/

9a89h429.aspx, 2003.

[37] MICROSOFT. Time travel debugging - record
a trace. https://docs.microsoft.com/

en-us/windows-hardware/drivers/debugger/

time-travel-debugging-record, 2017.

[38] MOZILLA. rr: lightweight recording & deterministic
debugging. https://rr-project.org/, 2019.

[39] NEWSOME, J., AND SONG, D. X. Dynamic taint
analysis for automatic detection, analysis, and signa-
turegeneration of exploits on commodity software. In
Proceedings of the 11st Network and Distributed System
Security Symposium (NDSS) (2005).

[40] OHMANN, P., BROOKS, A., D’ANTONI, L., AND LI-
BLIT, B. Control-flow recovery from partial failure
reports. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation (PLDI) (2017).

[41] OHMANN, P., AND LIBLIT, B. Lightweight control-
flow instrumentation and postmortem analysis in sup-
port of debugging. In Proceedings of the 28th
IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE) (2013).

[42] REPS, T. W., AND BALAKRISHNAN, G. Improved
memory-access analysis for x86 executables. In Pro-
ceedings of the 17th International Conference on Com-
piler Construction (CC) (2008).

[43] ROSENBLUM, N. E., ZHU, X., MILLER, B. P., AND
HUNT, K. Learning to analyze binary computer code. In
Proceedings of the 23rd AAAI Conference on Artificial
Intelligence (AAAI) (2008).

[44] RUCK, D. W., ROGERS, S. K., KABRISKY, M., OX-
LEY, M. E., AND SUTER, B. W. The multilayer per-
ceptron as an approximation to a bayes optimal discrim-
inant function. IEEE Transactions on Neural Networks
(1990).

[45] RUDER, S. An overview of gradient descent opti-
mization algorithms. arXiv preprint arXiv:1609.04747
(2016).

[46] SCHUSTER, M., AND PALIWAL, K. K. Bidirectional
recurrent neural networks. IEEE Transactions on Signal
Processing (1997).

[47] SECURITY, O. Offensive security exploit database
archive. https://www.exploit-db.com/, 2009.

[48] SHIN, E. C. R., SONG, D., AND MOAZZEZI, R. Rec-
ognizing functions in binaries with neural networks. In
Proceedings of the 24th USENIX Security Symposium
(USENIX Security) (2015).

[49] SONG, W., YIN, H., LIU, C., AND SONG, D. Deep-
mem: Learning graph neural network models for fast
and robust memory forensic analysis. In Proceedings
of the 25th ACM SIGSAC Conference on Computer and
Communications Security (CCS) (2018).

[50] SUTSKEVER, I., VINYALS, O., AND LE, Q. V. Se-
quence to sequence learning with neural networks. In
Proceedings of the 38th Annual Conference on Neural
Information Processing Systems (NeurIPS) (2014).

[51] TEAM, P. Address space layout randomization
(aslr). http://pax.grsecurity.net/docs/aslr.

txt, 2003.

[52] TIELEMAN, T., AND HINTON, G. Lecture 6.5-rmsprop:
Divide the gradient by a running average of its recent
magnitude. COURSERA: Neural networks for machine
learning (2012).

[53] VAN DE VEN, A., AND MOLNAR, I. Exec
shield. http://www.redhat.com/f/pdf/rhel/

WHP0006US_Execshield.pdf, 2004.

[54] WIKIPEDIA CONTRIBUTORS. Hyperbolic
function — Wikipedia, the free encyclopedia.
https://en.wikipedia.org/w/index.php?

title=Hyperbolic_function&oldid=866654186,
2018.

[55] XU, J., MU, D., XING, X., LIU, P., CHEN, P., AND
MAO, B. Postmortem program analysis with hardware-
enhanced post-crash artifacts. In Proceedings of the
26th USENIX Security Symposium (USENIX Security)
(2017).

[56] XU, X., LIU, C., FENG, Q., YIN, H., SONG, L., AND
SONG, D. Neural network-based graph embedding
for cross-platform binary code similarity detection. In
Proceedings of the 24th ACM SIGSAC Conference on
Computer and Communications Security (CCS) (2017).

USENIX Association 28th USENIX Security Symposium 1803

http://msdn2.microsoft.com/en-us/library/9a89h429.aspx
http://msdn2.microsoft.com/en-us/library/9a89h429.aspx
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/time-travel-debugging-record
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/time-travel-debugging-record
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/time-travel-debugging-record
https://rr-project.org/
https://www.exploit-db.com/
http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt
http:// www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.pdf
http:// www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.pdf
https://en.wikipedia.org/w/index.php?title=Hyperbolic_function&oldid=866654186
https://en.wikipedia.org/w/index.php?title=Hyperbolic_function&oldid=866654186

Index CVE/EDB Trace Statistics
Len. Global Heap Stack Other

1 2013-0221 228 6 14 106 4613
2 2013-0222 285 155 468 10895 844
3 2013-0223 341 27 74 5103 4301
4 2013-2028 348 24 2318 5268 715
5 2002-1496 136 141 3071 0 8723
6 2004-1271 3391 64 0 7031 3884
7 2009-2285 28387 77 23596 4287 1786
8 2004-1297 110 341 1641 6086 2326
9 NA-30142 419 357 2379 6523 1584
10 2016-7445 236 20 195 5544 3829
11 NA-38616 680 62 11332 639 11535
12 2008-2950 672 5 1632 7196 2195
13 2009-3050 704 151 1114 6572 1924
14 2005-3862 54203 15 4612 15543 7372
15 NA-890 2966 32 88 6369 4184
16 2004-0597 4107 18 365 8368 3818
17 2005-4807 15953 180 8584 4973 2514
18 2015-5895 1446 27 1642 6776 1840
19 2004-1289 13264 807 6503 7736 3233
20 2004-2167 1720 150 1492 1729 311
21 2009-5018 76603 75 175 26354 18975
22 2004-1257 56018 862 10192 31420 3333
23 2004-1288 69184 1189 0 24430 25256
24 NA-23523 1544 95 2833 7107 343
25 2017-5854 571 90 1382 10698 753
26 2004-1287 1212 660 5593 5948 332
27 2007-4060 4124 55 596 7438 2072
28 2009-3586 8612 80 1317 9854 2375
29 NA-17611 3384 2724 0 3407 367
30 2004-1120 2011 23 5060 7345 1655
31 NA-33251 16672 1 33168 474 25
32 2004-1275 41275 25 12039 10383 683
33 2012-4409 321 29 216 4769 2116
34 2016-2563 3586 1035 2349 8450 869
35 2006-2465 31806 10 4564 16304 5227
36 2010-2891 7611 0 715 14626 1764
37 2004-1279 29371 9 266 11924 10989
38 2014-8322 329 84 138 6908 2738
39 2008-5314 200000 0 0 118271 85077
40 2006-2971 200000 37208 0 4652 158140

Total - 883830 - - - -

Table 4: The detail of crashing programs. The CVE/EDB
column specifies the vulnerability identifiers. In this column,
NA indicates those vulnerabilities with an EDB identifier but
not a CVE Identifier). “Trace Len” describes the number of
instructions from the root cause site to the crashing site. The
numbers under “statistics” indicate the amount of memory
dereferences across 4 disjoint memory regions.

Appendix

Detail of crashing programs and their crashing trace. As
is described in Section 4, for our evaluation, we select 40
crashing traces corresponding to 38 distinct versions of vul-
nerable software. Table 4 describes the detail of these selected
programs, including the CVE/EDB identifiers tied to these
programs as well as the length of their crashing traces. In ad-
dition, the table shows the memory access behaviors of each
program. They are retrieved from the execution trace which

Global Heap Stack Other

Precision

HMM 65.69% 47.26% 71.38% 86.28%
CRF 15.87% 33.57% 63.30% 73.09%

Bi-RNN 95.53% 72.88% 94.18% 97.67%
Bi-GRU 91.97% 74.21% 94.62% 97.44%

Bi-LSTM 94.23% 77.12% 94.84% 98.57%
Our Model 98.30% 94.91% 98.83% 99.40%

Recall

HMM 63.25% 29.82% 83.08% 83.72%
CRF 8.17% 13.02% 55.56% 88.20%

Bi-RNN 79.75% 83.56% 96.39% 95.07%
Bi-GRU 89.89% 81.28% 96.93% 95.22%

Bi-LSTM 88.79% 88.20% 97.56% 95.58%
Our Model 88.64% 95.71% 98.65% 99.53%

F1 Score

HMM 64.49% 36.57% 76.79% 84.98%
CRF 10.79% 18.76% 59.18% 79.94%

Bi-RNN 86.93% 77.86% 95.27% 96.35%
Bi-GRU 90.92% 77.59% 95.76% 96.31%

Bi-LSTM 91.43% 82.29% 96.18% 97.06%
Our Model 93.22% 95.31% 98.74% 99.46%

Table 5: The overall performance of different machine learn-
ing models trained with the execution traces without the elim-
ination of common instruction sequences.

combines the trace from the root cause site to the crashing
site and its 19,200 prefix instructions. We have already made
all of the selected programs publicly available. They can be
downloaded from our project website [3]. It should be noted
that Table 2 and 4 share the same index.
Learning model performance without the elimination of
commonly-shared data. As is specified in Section 4, in
order to avoid the risk of using the same data to train and
test a learning model, we eliminate – from the training data
set – the instruction sequences commonly shared by both our
training and testing sets, and show the performance of the
learning models trained on non-overlapping data set. As a
comparison, we also conduct an experiment in which we do
not eliminate the 14.02% of shared data from the training
set, and train all the learning models over the overlapping
data set. In Table 5, we depict the model performance under
this setting. As we can observe from the table, the model
performance is actually comparable regardless whether we
trim off the commonly shared instruction sequences. This
implies that the shared data has nearly no impact upon model
classification and thus memory alias analysis.

1804 28th USENIX Security Symposium USENIX Association

	Introduction
	Background and Problem Scope
	Program Tracing for Software Debugging
	Value-set Analysis
	Alias Analysis and Root Cause Diagnosis
	Problem Scope

	Technical Approach
	Overview
	Existing Neural Architectures
	Vanilla Recurrent Neural Network
	Long Short-Term Memory
	Gated Recurrent Units

	Our Neural Network Architecture
	Detail of Our Neural Architecture

	Evaluation
	Implementation
	Data Set
	Experimental Setup
	Experimental Results

	Related Work
	Conclusion

