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Abstract

Recent advances in deep reinforcement learning (DRL) takes
artificial intelligence to the next level, from making individual
decisions to accomplishing sophisticated tasks via sequential
decision makings, such as defeating world-class human play-
ers in various games and making real-time trading decisions
in stock markets. Following these achievements, we have
recently witnessed a new attack specifically designed against
DRL. Recent research shows by learning and controlling an
adversarial agent/policy, an attacker could quickly discover a
victim agent’s weaknesses and thus force it to fail its task.

Due to differences in the threat model, most existing de-
fenses proposed for deep neural networks (DNN) cannot be
migrated to train robust policies against adversarial policy
attacks. In this work, we draw insights from classical game
theory and propose the first provable defense against such
attacks in two-player competitive games. Technically, we first
model the robust policy training problem as finding the nash
equilibrium (NE) point in the entire policy space. Then, we
design a novel policy training method to search for the NE
point in complicated DRL tasks. Finally, we theoretically
prove that our proposed method could guarantee the lower-
bound performance of the trained agents against arbitrary
adversarial policy attacks. Through extensive evaluations,
we demonstrate that our method significantly outperforms
existing policy training methods in adversarial robustness and
performance in non-adversarial settings.

1 Introduction

Deep reinforcement learning is one of the heated topics in
both academia and industry. Its goal is to learn a policy that
controls an agent to take a sequence of actions and fulfill a task
in an environment. Guided by the policy, the agent interacts
with the environment and receives rewards, indicating how
well the agent performs. The policy learning objective is
to maximize the cumulative reward of the agent. Based on
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this objective, existing research proposes the Proximal Policy
Optimization (PPO) algorithm [64], which has demonstrated
great success in training powerful agents for single-player
reinforcement learning tasks (e.g., Atari games [2]).

Going beyond the single-player setup, a more challenging
task is the two-player competitive setup, where the goal of
both players is to receive more rewards than their opponents.
Recent research [5] proposes a self-play mechanism that lever-
ages PPO to train a policy against itself in the two-player
game. This framework has dominated the policy training in
various RL environments, ranging from simulation games
(e.g., MuJoCo [5], Roboschool [55]) to Real-Time Strategy
(RTS) games (e.g., Dota 2 [54] and StarCraft II [69]).

Inspired by the great success of RL in two-player games,
researchers recently started to exploit its security risk and pro-
pose a new adversarial policy attack [25]. Different from other
attacks that make an unrealistic assumption (i.e., allowing per-
turbations to the policy input/output), this attack [25] trains
an adversarial policy to interact with the victim player, mis-
leading the victim to take non-optimal actions and forcing the
victim to fail its task. Following [25], a recent research [84]
proposes another method to train adversarial policies with
stronger adversarial exploitability. Due to the differences in
problem assumptions, most defenses against attacks in DNNs
or other attacks in DRL can not be migrated to defend against
adversarial policy/agent attacks [25, 84]. As discussed later
in Section 4.1, the only applicable defense (i.e., adversarial
retraining) can be easily bypassed by adaptive attacks.

In this work, we take an entirely different design path from
existing techniques and propose a novel and provable defense
against adversarial policy attacks. Technically, we first trans-
form the robust policy training problem into searching for the
optimal policy for both players at the Nash equilibrium point.
We analytically show that a policy at the NE point is also
a robust policy with a guarantee of its lower-bound perfor-
mance against arbitrary adversarial policies. Then, leveraging
the perturbation-based optimization framework, we design a
novel policy training method that optimizes toward the NE
point. Finally, we theoretically prove that our method guar-



antees the asymptotic convergence to the NE point and thus
guarantees the robustness of the trained policy. Leveraging
a distributed learning framework Ray [39], we prototype our
proposed policy training method and name it as "ProvAble
defense againsT AdversaRial pOLicy" (for short PATROL).

We extensively evaluate PATROL on multiple two-
player competitive games, ranging from simple matrix-
form and Euclidean games to complicated robot simu-
lators (e.g., MuJoCo [72]) and real-time strategy games
(e.g., StarCraft II [69]). We demonstrate that PATROL is supe-
rior to state-of-the-art policy training methods (i.e., fictitious
play [11] and self-play [5]) in the following aspects. First,
PATROL is more effective in searching for the NE points in
different types of games (e.g., games with discrete or continu-
ous action space, games with convex-concave or non-convex
non-concave value function). Second, the policies trained by
PATROL demonstrate stronger capability in non-adversarial
settings. Finally, PATROL significantly outperforms existing
methods in defending against existing adversarial policy at-
tacks. To the best of our knowledge, this is the first work that
learns robust policies for different two-player competitive
games and the first work that provides a certified robustness
guarantee against adversarial policy attacks.

In summary, the paper makes the following contributions.

We show the policy at the NE point is the robust policy.
Guided by this discovery, we propose PATROL,' a novel
robust policy training method.

L]

We theoretically prove that PATROL is guaranteed to con-
verge to the NE point and thus provides certified robust
policies against arbitrary adversarial policies, even in
games with non-convex non-concave value functions.

L]

We demonstrate, analytically and empirically, that com-
monly used defenses are insufficient in providing cer-
tified robustness guarantees and thus can be easily by-
passed by adaptive attacks.

We compare PATROL with state-of-the-art policy training
methods in various environments and demonstrate its
superiority in adversarial robustness and performance in
non-adversarial settings.

2 Background

As is depicted in Figure 1a, the players in a two-player com-
petitive RL environment observe the current environment
state and take action simultaneously. The environment then
transits to the next state and rewards each player based on
their performance at that step. The goal of both players is to
learn an optimal policy that maximizes its long-term reward.
Deep reinforcement learning models the player’s policy as a

"https://github.com/Henrygub/rl_robust_minimax

DNN, which outputs its next action, given its observation of
the current environment. In the following, we will formally
model a two-player competitive RL task, followed by the
state-of-art method for training DRL policies in such tasks.

2.1 Two-player Zero-sum Markov Game

A two-player competitive RL environment is typically
modeled as a two-player zero-sum Markov game [91].
Formally, a two-player Markov game is defined as
(AL, {ﬂl}ieg\[, P, {R'};cq» ¥)» where AL = 1,2 denotes the
players. S denotes the state space observed by both players,
A’ represents the action space of player i. Let the joint action
A=2Aa"x 4% P:5 x4 A(S) denotes the state transition
of the environment. R': § x 4 — R is the reward function
for player i. The game is a zero-sum game if ¥; R'(s,a) = 0
for any state-action pairs, indicating the gain of one player is
exactly the loss of the other. y € [0, 1) is the discount factor.

At each time step 7, each player takes an action a/ based
on the current state s;,. Driven by both players’ actions, the
system then transits to a new state s,; and rewards each
player with an instant reward /. As mentioned above, the
player’s goal is to maximize its long-term reward, by learning
an optimal policy 7. The long-term reward of the i-th player
when the player plays the policy 7’ and its opponent plays the
policy T~/ is defined as the state-value function.

Vatnt(8) = Bgpromi gt [ YR (s, s 0)lso =],y

>0

where a; = a x a; ! represents the joint action. Accord-
ingly, the action-value function of player i is defined as
i pi(5,0) = R'(s,a) +'YES/~T[VTIEi7n—i(S/)}' Note that a
player’s state-value and action-value functions depend on
not only its own policy but also the other player’s policy. This
indicates that to obtain optimal performance in a two-player
game, a player should choose their policy by considering the
choices of their opponent. A common solution for two-player

games, Nash equilibrium, is defined as [6]

Definition 1 A Nash equilibrium of a two-player competitive
Markov game is a joint policy T, = {T., %, '}, such that for
anys € Sandie N, Vrii m_,-(s) > Véi m_,(s) for any T'.

NE states that, for each player i, 7’ is its optimal policy when
its opponent plays the policy 7t ‘. This also can be expressed
as T\ is the i-player’s best response to its opponent’s policy
7, because Vfii i (s) > Véi i (s). Ata NE point, both play-
ers are playing their optimai ﬁolicy and have no incentive to
update their policy further. As such, a NE point is a stable and
optimal point for both players. For finite games, NE always
exists but may not be unique [6]. Note that we typically take
the absolute value of the reward when computing the value
for the player with a negative reward.
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(a) Two-player game. (b) Self-play mechanism.
Figure 1: Illustrations of with the Roboschool Pong environ-
ments [55]. “Obs." stands for observation.

2.2 Self-play with PPO

Researchers in the game theory and RL community have de-
signed various techniques to find NEs in two-player zero-sum
Markov games. Most are designed for simple environments
with a discrete action space [1,3,95] or require accessing
the state-transition function [4, 10, 24, 38, 49]. The state-
of-art technique for sophisticated environments with contin-
uous action spaces is self-play with policy gradient meth-
ods [5,44, 60].
Self-play. Motivated by the fictitious play method, recent
research [66] proposes to train policies in multi-player RL by
playing the player against themselves. As demonstrated in
Figure 1b, in a two-player environment, the self-play learning
process starts by randomly initializing the same policy for
both players and selecting a player to train the policy. In each
training iteration, it updates the policy of the selected player
and then copies the updated (latest) policy to the other player.
The training process ends when the winning rates of both play-
ers converge to around 50%. Silver et al. [66] shows that this
training strategy could even defeat professional human play-
ers in the GO game. Follow-up research [5,94] discovers that
other than the latest policy, training against randomly selected
older versions of the trained policy could further improve
the performance. Self-play offers an effective framework for
policy training. Under this framework, it is also necessary
to decide which algorithm to use for updating the policy in
each training iteration. Recent works [5, 12] show that for
sophisticated environments, Proximal Policy Optimization
(PPO) [21,64], the state-of-art technique for policy training
in single-player RL, provides the highest efficacy.
PPO models a player’s policy as a DNN g (als), parame-
terized by 0. To resolve the parameter, PPO proposes the
following objective function
argmaxg E(q, )on,,, [min(clip(pr, 1 — &, 1+€)A;, prAr)],
Teo (At |St 2
= ey = Al

Here, m,;4 is the old policy, and Ax(a,s) = Ox(s,a) — Vz(s)
is the advantage function [63]. This objective maximizes the
advantage function, which encourages searching for a better

policy than &t,;4. To stabilize the training, it also constrains
the policy update ratio p, within a certain trust range. By
solving Equation (2), a new policy g with less performance
variance can be obtained. As mentioned above, integrating
PPO into the self-play framework enables decent performance
for sophisticated two-player environments (e.g., MuJoCo [5,
21], Roboschool [55], and hide-and-seek [56]).

3 Existing Attacks and Problem Scope

3.1 Existing Attacks in Two-player Games

Threat model. An attacker treats one player as the vic-
tim player, fixes its policy, and trains the other player
(i.e., adversarial policy/agent) to win the game. This setup
simulates a real-world scenario where a game vendor releases
default RL agents to play with human professionals or other
game bots (e.g., [52,66]). An attacker trains an adversarial
policy to exploit the weakness of the default Al bot and thus
decisively win the game. Note that, different from other at-
tacks [29,62] against DRL, this threat model does not assume
attackers have the privilege of manipulating either the envi-
ronment or the victim agent’s policy network. As is discussed
in [25, 84], this makes the attack more practical in that an at-
tacker no longer needs to put tremendous effort into hacking
the RL engine or varying the physical world. In addition, we
follow [25, 84] and set up a black-box attack scenario, where
an attacker can only access the public-observable information
about a victim (i.e., observation, action, and instant reward)
but not its policy network internals. Under this setup, the
attacker’s goal is to train an adversarial policy to beat the
victim in the corresponding game.

PPO-based attack. Gleave er al. [25] propose the first at-
tack under this threat model. This attack first fixes the victim
policy and treats it as part of the environment for the adversar-
ial player. Then, it uses the aforementioned PPO algorithm
to train an adversarial policy. By using this simple method
to train adversarial policies, Gleave ef al. show the obtained
policy could defeat the victim player in MuJoCo games [72].
Although an adversarial policy trained by this method some-
times defeats the victim, its overall winning rate is low. As
demonstrated in [84], PPO algorithm is originally designed
to train a normal policy and has less guidance for one player
to identify the weakness of its opponent’s policy. As such, di-
rectly applying PPO gives a policy with limited exploitability
and thus results in a low winning rate.

Action deviation attack. To tackle the limitations above, Wu
et al. [84] design a novel objective function to train the adver-
sarial policy. This objective function combines the PPO loss
(Eqn. (2)) with an action deviation term to explicitly disturb
the victim player. This term maximizes the action difference
of the victim player with and without facing the adversarial
player. The insight is that an adversarial player could influ-
ence its opponent’s future actions via its own actions. By



imposing maximum influence upon the victim’s actions, the
adversarial player could force the victim to take a series of
non-optimal actions and thus reduce its collected reward. As
is shown in [84], adversarial policies trained by this attack
achieve a much higher attack success rate than those trained
by the PPO algorithm [25] in both the MuJoCo You-Shall-
Not-Pass game and the Roboschool Pong game [55].

3.2 Our Problem Setup

Assumptions for defenders. First, similar to the attacker,
we do not assume the defender (or game developer) could
manipulate the environment. As discussed above, this is
important for the proposed defense to be physically realistic
and generalizable to real-world RL environments. Second,
we also do not assume the defender has prior knowledge
about the attack it will face. As such, the defender cannot
pretrain a defense policy based on a known attack. Third,
we do not assume the defender could access or disturb the
training process of the adversarial policy. Instead, we allow
the defender to update the victim policy periodically after
observing a large number of losses. To update the policy, the
defender could collect game episodes of the victim player
playing against the current or previous opponent and then use
the collected episodes to retrain the victim policy network.
With the above assumptions, our goal is to train a defense
policy for each player in the two-player game, which guar-
antees a lower-bound performance against any unseen ad-
versarial policies. We also want this policy to preserve its
generalizability in non-adversarial settings. This is equivalent
to finding a policy with an optimal worst-case performance.
Using this policy as the default policy, game developers could
guarantee their worst-case reward is bounded when facing
arbitrary attacks. Note that we consider the real-world RL en-
vironments where the state and action spaces can be discrete
or continuous and the state-transition function is unknown.

4 Key Technique

To achieve the goal specified above, we design and develop
PATROL . At a high level, we first model robust policy training
as finding a Nash equilibrium in a two-player zero-sum game.
Then, based on classical game theory, we design a novel
policy training algorithm. Finally, we theoretically prove that
policies trained by our algorithm are robust against arbitrary
adversarial policy attacks. In the following, we start with
some naive solutions and discuss their limitations. Then, we
introduce our proposed method, followed by the theoretical
analysis of the robustness guarantee.

4.1 Possible Solutions and Limitations

Existing research has proposed a large number of adversar-
ial defenses for DNN classifiers. Among these techniques,

adversarial retraining [26] and randomized smoothing [18]
are the most widely used method for empirical and certifiable
defense. Randomized smoothing is not applicable to our prob-
lem because our threat model does not allow perturbing the
environment. As such, existing defenses [27, 84] under our
threat model follow the idea of adversarial retraining. Specifi-
cally, suppose the defender (game vendor) releases a policy
7" for the player v in a two-player zero-sum game. An attack
then launches an adversarial policy Tt for the opponent player
o, which successfully defeats the victim policy ©”. Follow-
ing adversarial retraining, this defense first plays ©” against
7% and collects a set of episodes. Then, it retrains ©° with
the collected episodes. As is shown in [27, 84], the resulted
policy ®” could outperform ©t*. However, this defense could
be easily bypassed by training a new adversarial policy t*
against ", such that t* achieves more reward than ©% when
playing against ". Actually, as demonstrated in [27], existing
defenses are only effective against the target attack * but not
an arbitrary one (e.g., ).

Motivated by this limitation, we propose another possible
solution — iteratively adversarial retraining, i.e., iteratively
training the victim and adversarial policies against the cur-
rent adversary and victim. Intuitively, this iterative process
may keep searching for better policies for both attacker and
victim and thus give a robust policy that could defend against
the strongest attacks. After rigorous analysis, we found that
this is not a feasible solution. In Appendix A.l, we analyti-
cally show that the iteratively adversarial retraining can not
guarantee convergence even for simple two-player zero-sum
environments. In Appendix B, we further demonstrate that
iteratively adversarial retraining is hard to converge, and its
policies are still vulnerable to adversarial policy attacks.

4.2 Overview of the Proposed Technique

So far, we have shown that the naive solutions derived from
adversarial defenses for DNNs cannot train robust policies.
Motivated by these failures, we design a novel defense mecha-
nism. Instead of relying on adversarial retraining, which only
finds a local optimal around the currently explored policy
space, we draw insight from classical game theory and design
a training algorithm to directly find a robust joint policy in the
global space. As we will show later in Section 4.4, the joint
policy is guaranteed to be robust against arbitrary attacks on
both players in two-player zero-sum games. In this section,
we provide an overview of our proposed technique.

Insights behind our design. As specified in Section 3, our
goal is, for each player, to find a policy with an optimal worst-
case (lower-bound) performance against arbitrary adversarial
policies trained by existing attacks [25,84]. This is equivalent
to searching for a point in the joint policy space such that one
player’ policy is the best response (i.e., strongest opponent) to
its opponent player’s policy. At such a point, for each player,
its opponent player’s policy is the best response to the player’s



current policy, meaning the player is playing in the worst-case
scenario. At the same time, the player’s policy is also the
best response to its opponent player’s policy, indicating it has
already achieved the optimal performance in the worst-case
scenario. As such, each player achieves its optimal worst-case
performance at this point. Recall that, as stated in Definition 1,
at a Nash equilibrium point, the policy of each player is the
best response to the other player. As such, training robust
policies with optimal worst-case performance is equivalent
to finding a Nash equilibrium point in the corresponding
two-player zero-sum game.

Formally, at a NE point (r},72), we have V!(n!,72)
VI(r',x2) and V?(n!,72) > V2(x!,7?).> Given that V'
—V2 (since the game is zero-sum), we have

v

vie!,n?) <vi(nl,n?) <vi(x!,n?). 3)

The right half of this inequality states that 72 is the policy
that forces 7! to receive the lowest long-term reward, indi-
cating ! is playing against its strongest opponent and thus
is in its worst-case scenario. The left half of Eqn. (3) then
shows that 7! is the policy that receives the highest long-term
reward against m2, meaning 1! achieves the optimal perfor-
mance in the worst-case scenario. As such, by playing wt
for the 1st player, we could guarantee the player’s optimal
worst-case performance as V! (1!, w2). For the 2nd player, we
could derive a similar inequality: V?(xl,n?) < V2(xnl n2) <
V2(x!,n2), showing that m2 is the robust policy for the 2nd
player with the optimal worst-case performance of V(! ni)
To further explain why policies at the NE point are ro-
bust policies, we again take for example the real-world game
scenario mentioned in Section 3. Suppose the game vendor
releases m! as the default policy for the Ist player. In our
threat model, an attacker will then try to train a policy m? to
defeat . According to Eqn. (3), the best policy the attacker
can search for is TEE. In other words, the attacker cannot find
a stronger opponent for 1! other than nt2, showing that 7t!’s
worst performance is bounded and thus is robust against ad-
versarial attacks. Similarly, 72 is the robust policy for the 2nd
player. As such, by finding a NE point with a joint policy
(nl,m2), we could achieve a robust policy for both players
in the game. Based on the analysis above, we can define a
pair of policies (7', 1 %) as robust policies if they satisfy the
condition in Eqn. (3), and the corresponding lower bound
performance for each player is Vi (!, t~%).
Theoretical foundation for training robust policies.
Through the analysis above, we transform the problem of
training a robust policy into searching for a NE point in a
two-player zero-sum game. To learn a NE point, we seek the
theoretical foundation from classical game theory and find
the following theorem to guide our training algorithm design.

2we denote two players in the game as the Ist player and the 2nd player.
vi(n!,n?) = V(::l 2) () is the value function of the 1st player under the joint

policy (!, 7?).

Theorem 1 (Minimax Theorem [20]) In any finite, two-
player, zero-sum game, at any Nash equilibrium, each player
receives a payoff that is equal to both its maximin value and
its minimax value.

value of the

Here, the maximin i-th player is
maxgming; V(' ,n%), where m is the policy of
the opponent player. Maximin value is the highest long-term
reward the i-th player could receive without knowing the
other player’s policy. The minimax value is defined as
min, imax, V/(m',t~7). Itis the lowest long-term reward the
opponent player could force the i-th player to receive without
knowing the i-th player’s policy. Based on Theorem 1, we
can obtain the following corollary.

Corollary 1 Given a joint policy (T.,%2) of a two-player
zero-sum game, as long as the following conditions are satis-

fied

(ni,ni) = argmaxy argminnle (71:1,752) , 4

and
(n!, ) = argming argmaxy vzl ). (5)

(ni,nf) is the joint policy at a NE point.

The proof of this corollary is straightforward. If the conditions
are satisfied, playing the joint policy (7!, 72) could achieve
the minimax value and the maximin value of the 1st player.
Given that V2 = —V!, we have max i min V! (x!,7?) equals
to min max,2V2(n!, %), showing the maximin value of the
Ist player is the minimax value of the 2nd player. Similarly,
the minimax value of the 1st player is the maximin value
of the 2nd player. As such, (n!,n2) achieves the minimax
value and the maximin value for both players. According to
Theorem 1, the payoff of each player at any Nash equilibrium
point is equal to its minimax value and the maximin value.
(ml,m2) corresponds to a joint policy at a NE point.

To better explain the insights behind Corollary 1, we derive
Eqn. (3) from the conditions in Corollary 1. Specifically, sup-
pose solving the inner optimization min V! (%', 7?) of the
Eqn. (4) gives a class of policy n> = g(x'), which is repre-
sented as a function of T!. Since g(nt') = argmin, V! (n!,7?),
we have V!(r} g(n})) < V!(rn},n?) forany 7t/ Thatis, g(r')
is the class of policies for the 2nd player that forces the 1st
player to receive the lowest long-term reward. Then, sup-
pose further solving the outer optimization max, V! (x!,7?)
gives 7!, Plugging nt! into the inequality above, we have
Vi(nl,g(x!)) < VI(n!l,n?). Similarly, solving the inner
optimization max, V'!(n!,n?) of the Eqn. (5) gives h(n?),
which satisfies V! (h(n?),7?) > V!(xn!,7?) for any 7. Then,

suppose T2 = argmin,» V! (h(n?),n?) is the solution of the
outer optimization of the Eqn. (5), we have V! (h(n2),n2) >

VI(n!,72). So far, we have the following inequalities

(m,7%),
(n',m2),

*

V! nL nl <v!
(nt g(a}) <V! ©
,T

*



where the joint policy (7}, g(xl)) gives the maximin value of
the long-term reward and the joint policy (h(ni),ni) gives
the minimax value. If we could achieve that &! = A(n2) and
72 = g(n!), the joint policy (n!,72) gives the maximin and
minimax value at the same time, i. e satlsfylng the condltlons
in Corollary 1. Besides, when ! = h(n?) and 7: = g(ml),
Eqn. (6) is equivalent to Eqn. (3), indicating (!, 72) is the
policy of a NE point. As such, if a joint policy satisfies the
conditions in Eqn. (5) and Eqn. (4), it reaches a NE point and
thus is a set of robust policies for both players.

4.3 Proposed Policy Training Algorithm

Corollary 1 provides high-level guidance for learning a NE
point in a two-player zero-sum game, i.e., solving a joint pol-
icy that gives the minimax and maximin long-term reward at
the same time. As mentioned in Section 2, existing research
has proposed a large body of policy searching and learning
methods to find the NE policies in RL environments with a
discrete action space and a known state-transition function.
However, for sophisticated RL environments with continuous
action and state space and an unknown state-transition func-
tion, it is still challenging to learn the NE policies. Specifi-
cally, there are two challenges: (1) without the state-transition
function, we need to find a way to estimate the long-term re-
ward; (2) we need to design a novel optimization framework
that resolves the maximin objective function in Eqn. (4) and
the minimax objective function in Eqn. (5) at the same time.
In this section, we discuss how to tackle these limitations and
introduce our proposed policy training algorithm.
Long-term reward estimation. As mentioned in Section 2,
the long-term reward of a player is represented as the state-
value function defined in Eqn. (1). It is clear that without
knowing the state-transition function 2, we can compute the
exact value of the long-term reward from Eqn. (1). Inspired by
the reward approximation methods in existing policy learning
methods [73], we propose to approximate the value function
with a deep neural network. Specifically, given a joint policy
n, we define a DNN V;(s) to approximate the long-term
reward of the 1st player in the game. This network takes as
input the player’s observation of the current state s and outputs
the prediction of the player’s long-term reward V,! (s). To train
this approximated value function V; (), we first run the policy
in the corresponding environment and collect the ground truth
training episodes T = {ol,,, %, 7\ }m=1:m1=1.7, Where mt
represents the ¢-th time step in the m-th episodes, T is the total
number of time steps in one episode, and M is the total number
of episodes. Then, based on the Monte Carlo method [50],
we approximate the ground-truth long-term reward for the
Ist player at the state s, as Vy(s,) = % Yo i, Yrl, . Using
Vr(s,) as the label for Vj(s;), we can learn the parameter of
Vi (s) by minimizing the following objective function

. 1 1 -
miny, MZ?;\Vn(s,)—Vn(s,)F. (7

By solving the Eqn. (7) with a gradient-based optimization
method, such as ADAM [32], we could obtain an approximated
value function for the 1st player under the joint policy 7. Since
the game is zero-sum, the value function of the other player
can be simply approximated by —Vj (s).

Proposed robust training algorithm. With the approxi-
mated value function, we then use it to learn the joint policy
at a NE point. Recall that Corollary 1 gives two conditions
for achieving a NE point, where each condition is an op-
timization function. Recent research [13] proves that if a
function f(x,y) is convex-concave (convex in x and concave
iny) and — f(x,y) is concave-convex (concave in x and convex
in y), argmax argmin, — f(x,y) = argminjargmax, — f(x,y).
In our problem, if the value function V?(x!,7?) (i.e., V?(s))
is convex-concave and V!(nt! ,w?) is concave-convex, we
can solve only one optimization function (i.e., Eqn. (4) or
Eqgn. (5)). The resulted policy is the also the solution of the
other optimization function and thus is the joint policy at a
NE point. However, in sophisticated games with continuous
action and state space, the true value function is neither con-
cave nor convex, letting along the function approximated by
a DNN. Recent research [31,94] demonstrates that without
the convex-concave property, solving only one optimization
function in Corollary | cannot guarantee to find a NE point.
To reach a NE point from a non-convex non-concave value
function, we still need to find a joint policy which satisfies
both conditions in Corollary 1.

To achieve this, we borrow the idea from the perturbation-
based optimization framework [34, 53]. This framework is
original proposed to find a saddle point (x.,y.) for an arbi-
trary function f(x,y), such that f(x,y.) < f(xs,¥s) < f (x4, ¥)-
In our problem, this is exact the condition at a NE point
(Eqn. (3)). At a high level, to find a saddle point, this frame-
work simultaneously solves the minimax and the maximin
optimization and reduces the difference between the minimax
and maximin value, leading the solutions of both optimiza-
tions to converge to the same point. More specifically, it
iteratively finds perturbed points u of the current x and v of
the current y, such that u is the locally strongest opponent of
y and v is the locally strongest opponent of x, and updates x
and y against v and u. As we will discuss later, this process
minimizes the gap between the minimax and maximin value,
approximated by f(u,y) — f(x,v), guiding the optimization
process to converge to the saddle point.

Motivated by this framework, we propose a novel policy
training algorithm to find a Nash equilibrium in our problem.
As specified in Algorithm 1, we first initialize a population
of policies for both player (Line 2). In each iteration, for
each pair of policies (n}d,nii), we first find their strongest
opponents from the policy population ie., TI: and Tc ; (Line
5&6) Since V!(n},,m ) <v! (nk”nkl) and V (nkl,nkl) <
Vi(znl,m2), we have y! (i, W) <Vin m,nkl) Then, we
fix the 2nd player’s policy as nw and update nk After fixing
the policy of one player, the Markov game downgrades to a



Algorithm 1: Robust policy training algorithm.

1: Input: Number of iterations I, number of inner loop /
number of candidate policies K, episode size M,

2: Initialize K pairs of policies (n,&,ni)k:”(.
3: fori=1to/do
4. fork=1toKdo
. i 1 2.
5: Find t£1e strongest op;;on?nt f20r Ty, from {77}, k.,
Le., y,; = argming Vi (1, 77 )
. ; 2 1.
6: Find t?e strongest opplonelnt f;)r T, from {707 ik,
ie., m, = argmaxy Vi (7, ;)
7: Update n,li against n‘z,i using the PPO algorithm
with [ iterations, i.e., n,i(i e argmaxV}(-,m2)
8: Update nkl against 7!, using the PPO algonthm
with [ iterations, i.e., ni( L) ¢ argminVi(m,, )
9: Update the value function Vki by solving Eqn.(7).

10:  end for
11: end for
12: Play each policy in {n},}s—1.x against each policy in

{n,il}k:] .x and select the strongest policy for each party

!, and 72,
13: Output: the final policy: mt!, and 72,

single-player MDP, and the policy TI:}C can be updated by using
the state-of-the-art PPO algorithm (Line 7). With the resulted
n}c(iﬂ), we have VI(n}, %) < Vl(n (l+1),n§i). Similarly,
we also update T7; against ,; and obtain 7}, ,, such that
VM M) < VI, 5;) (Line 8). After running this
update process, we could obtain the following inequality from
the inequalities above

2

V (s T 0y) =V (R ) < V! () =V (). (®)

This inequality shows that the gap between V'(n},n7) —
V! (n,‘c,ng) keeps reducing as the iteration proceeds. Since
V! (nu,nk) approximates the minimax value in Eqn. (5) and
v! (nk, 72) approximates the maximin value in Eqn. (4), this
optimization process could reduce the difference between
these two values and thus push the solution towards a NE
point. After solving the new polices, we also update the value
function using the estimation method introduced above (Line
9). Finally, we find the strongest policy for each player and
output them as the final policies for both players (Line 12).
Note that although both methods leverage the PPO algo-
rithm, our method is fundamentally different from the self-
play mechanism in the following aspects. First, rather than
training only the policy of one player and copying its policy
to the other player, our method updates both players’ policies.
More importantly, our method updates a current policy against
its strongest opponent and pushes the joint solution towards a
NE point. As we will discuss in Section 4.4, our method is
guaranteed to converge to a NE point, while self-play cannot
provide such a robust guarantee. Our empirical evaluation in

Section 5 further shows that policies trained by our method
are more robust than those obtained by self-play.

It should also be noted that the perturbation-based optimiza-
tion method mentioned above [34,53] are about general ideas
of perturbation-based optimization. We instantiate this idea
with our customized designs and enable a novel robust policy
learning algorithm, especially for sophisticated two-player
RL with unknown state transition, continuous state/action
spaces, and non-convex non-concave value functions.

4.4 Theoretical guarantee

In the final part of this section, we provide the theoretical
analysis to prove that our proposed training algorithm guar-
antees to converge to a NE point. In other words, poli-
cies trained by our method are provably robust against ad-
versarial policy attacks. Formally, given a pair of polices
(ml,m2) obtained by our proposed method, we prove that
(nl,72) asymptotically converges to a NE point, such that
Vil n2) —e <V(nl,72) <VI(nl,7?) +ewithe — 0.
Recall that the true value function is approximated with
a neural network, we first present the following lemma to
guarantee that the approximation error is bounded.

Lemma 1 Given an approximation V1 of V! obtained from
M> Clog episodes, we have Pr(\V1 an| <g)>1-p

The proof of this lemma is show in Appendix A.2. It states
that with a large number of episodes, the true value function
could be accurately approximated by a parametric function
with a high probability. With Lemma [, we then present the
convergence guarantee in the following theorem.

Theorem 2 Under a bounded learning rate, a joint pol-
icy (ml,n2) learned from an by using Algorithm 1 satis-
fies the following inequality vl (Tl: n2)—e<Vi(nl,n2) <
Vi(nl,n?) +¢, forall ©' and 7. V1 is a smooth and differ-
entiable function.

The proof of this theorem is specified in Appendix A.3. Theo-
rem 2 shows that the solution given by our method guarantees
to converge to a e-approximate Nash equilibrium point, where
€ is the value function approximation error in Lemma 1. As
analyzed in Appendix A.2, € keeps decreasing as the number
of training episodes increases. Combining this theorem with
the analysis in Section 4.2, we theoretically prove that our
method learns a joint policy at an approximated Nash equilib-
rium point and thus provides a robust policy with a guarantee
of worst-case performance for each player, even when the
value function is non-convex and non-concave.

5 Evaluation

Throughout the evaluation, we seek to answer the following
questions: @ Can PATROL and the existing policy training



methods (fictitious play and self-play) find the ground truth
NE point in different two-player zero-sum games? @ Does
PATROL better converge to the unknown NE point than self-
play in sophisticated games? & Is PATROL more robust than
self-play under the PPO-based attack [25]? @ Is PATROL more
robust than self-play under the action deviation attack [84]?

5.1 Experiment Setup

Environment selection. To answer question @, we select
seven toy games: @ a matrix form game with a discrete
state/action space, @ two Euclidean games with a continuous
state/action space and a convex-concave value function, ®
two Euclidean game with asymmetric action space, @ two Eu-
clidean game with a continuous state/action space and a non-
concave and non-convex value function. All of these games
have a unique ground truth Nash equilibrium point. Using
these games, we evaluate whether PATROL and selected base-
line methods could converge to the NE point in games with dif-
ferent properties: discrete and continuous state/action space
(®&®@); symmetric and asymmetric action space (Q&®);
convex-concave and non-convex non-concave value function
(@&®). To answer question @-@, we select three types of
games — four MuJoCo games [72]: You-Shall-Not-Pass and
Kick-And-Defend (with asymmetric action space) and Sumo-
Humans and Sumo-Ants (with symmetric action space); One
Roboschool Pong game [55] (with symmetric action space);
the StarCraft IT game [69] (with symmetric action space). All
these games are sophisticated RL environments with a con-
tinuous state/action space and an unknown non-convex non-
concave value function. They are commonly used in academia
for evaluating RL algorithms, and self-play with PPO is the
state-of-art policy training algorithm in these games. In what
follows, we introduce the toy games. Fig. 5 demonstrates
the sophisticated games. The action spaces of all selected
environments are continuous.

Matrix-form game. We consider the classical matching pen-
nies game [78], where each of the two players has one
penny in hand. As the game starts, each player chooses to
turn its penny to head or tail. After making their choices,
the players reveal their pennies simultaneously. If the pen-
nies match (both heads or tails), the 1st player wins; oth-
erwise, the 2nd player wins. The reward is as follows:
r'(H,H) = r}(T,T) = 1, r'(H,T) = r'(T,H) = —1. Here,
r'(H,T) is the reward of the 1st player when it plays head
(H), and the 2nd player plays tail (T). 7> = —r!. This game
has a global NE point — (Pr! (H),Pr!(T)) = (0.5,0.5) and
(Pr?(H),Pr*(T)) = (0.5,0.5).

Euclidean games. The payoff of a Euclidean game is a smooth
and differentiable function f(x,y). The 1st player controls
x and tries to minimize f(x,y), while the 2nd player aims
for maximizing f(x,y) by controlling y. V! = —f(x,y) and
V2 = f(x,y). The action space for each player is the domain
of the corresponding variable. We consider three types of

Game Type | ID Value function Domains NE point
convex-concave | @-S flx,y) =x>—y —2x xy€([-2,2] (1,0)

symmetric action space | @-C | f(x,y) =x* +2xy—4y” +10x—6 x,y € [-50,50] (=4,-1)
convex-concave | @-S fley) =27 =2y —2xy—6x xe[-5,5,ye (4.4 (2,-1)
asymmetric action space | ®-C | f(x,y) =+" +4dxy—2y" +24x | x€[0,50], y € [-50,0] | (-4,-4)
non-convex non-concave | @-S fly) =257 —xy xy€[-2,2] (0,0)
symmetric action space | @-C fx,y) =x° —9x% —2y°x° x,y € [—=50,50] (6,0)

Table 1: The Euclidean games used in our evaluation. “S”
and “C” stands for the simple and complicated game.

Euclidean games. For each type, we construct a simple and
complicated game following the method in [76]. The simple
game has a limited domain and a NE point near (0, 0). The
complicated game has a larger domain and a NE point that is
relatively far from (0, 0), indicating they are not that easy to
be found. Table | shows the selected games.

Baseline. As mentioned above, we select the state-of-art
policy training method — self-play with PPO as the baseline
method. Besides the standard version (denoted as self-play),
we also consider two variations: 1) instead of randomly select-
ing a previous policy as the opponent, we choose the strongest
policy as the opponent [74] (denoted as self-play-VA); 2) we
replace the PPO with a older but also widely used policy up-
dating method A3C [51] (denoted as self-play-VB). Besides
self-play and its variations, we also consider a classical policy
learning method — fictitious-play [11]. Because of limited
scalability, fictitious-play is not applicable to sophisticated
environments. We will compare it with PATROL on toy games.

Evaluation metric. For the toy games, which do not have
a winning or losing criterion, we measure the reward of the
players. For MuJoCo, Roboschool Pong, and StarCraft II,
we measure the winning rate of the players. In addition, we
run each policy training process 4 times with different initial
states and record the mean results. This process helps remove
randomness and access the stability of the training algorithms.
When comparing the adversarial robustness, we conduct a
paired t-test to compare PATROL with the baseline with the
best performance. We report the p-value, where a lower p-
value indicates a better statistical significance.

Implementation. Recall that PATROL requires training mul-
tiple policies per player, which is computationally more ex-
pensive than the self-play mechanism. To make the algorithm
implementation more efficient, we leverage a distributed rein-
forcement learning framework — Ray [39] to implement our
proposed algorithm. As is shown in Appendix B.2, with Ray,
our training can be completed in a reasonable time. Recall that
self-player copies the policy of one player to the other player.
It cannot give a policy for each player in one training round.
For the games with symmetric action space, we run self-play
twice to get a policy for each player. For the games with
asymmetric action space, we follow the self-play paper [5]
and initialize one policy per player and iteratively update each
policy without copying policies. Similar to our method, this
modified self-play gives a policy for each player at the same
time. As specified in Appendix B.1, we implement our com-
parison baselines and the two attacks [25, 84] based on their



official implementations. For the hyper-parameters shared by
PATROL and the baseline methods (e.g., policy model archi-
tectures, training iteration, learning rate), we select the widely
adopted choices without tailoring for PATROL. We keep them
the same for all methods to enable a fair comparison (See
Appendix B.1 for more details). The hyper-parameter spe-
cific to PATROL is the number of policies per player K. In
this evaluation, we fix K = 2. Later in Appendix B.2, we
perform a sensitivity test on K (which shows PATROL is not
that sensitive to the subtle variations in K).

5.2 Experiment Design

Experiment I. To answer question @, we use PATROL
and four baseline methods (three variations of self-play and
fictitious-play) to train a policy for both players in the seven
toy games. We compare each method’s final policies with the
ground truth NE point to verify whether PATROL outperforms
these baseline methods in converging to the NE point.
Experiment II. We compare PATROL with three self-play
methods in six sophisticated games where the NE point is
unknown (Question @). First, we train a set of policies in
selected sophisticated games using these methods. Next, we
play the policy learned by PATROL against the policies learned
by the baseline methods for each player in these games, and
record the winning rate. Since each player’s policy is the
strongest response/opponent to the other player’s policy at a
NE point, the method that converges closer to the NE point
should be more difficult to defeat using other policy train-
ing methods. As such, we compare the performance of the
cross competitions between our policies and those obtained
by the baselines to identify the stronger responses and assess
the convergence of each method to the NE point. We will
also play the policies learned by selected methods against
the zoo agents in the MuJoCo and Roboschool Pong games.
The policies with higher winning rates demonstrate better
convergence to the NE point and greater generalizability.
Experiment III. In this experiment, we compare the adver-
sarial robustness of PATROL and the three self-play methods
against the PPO-based attack [25] (Question ) in the six
sophisticated games. Specifically, for each player in the Mu-
JoCo games, we use the PPO-based attack [25] with the same
hyper-parameters to train an adversarial policy against the
policy learned by PATROL and baseline methods. Then, we
compare the winning rate of the attack policies to investigate
which method is more robust against this attack. Finally, for
all the policies, we play its policy for one player ' against
its policy of the other player 7~/ and the corresponding ad-
versarial policy ©® and compare the winning rate of T~/ with
that of ©®. If 7~/ has a higher winning rate, verifying the
corresponding method provides a robustness guarantee with a
lower-bound performance. As mentioned above, we also con-
duct a paired t-test to demonstrate the statistical significance
of our comparison result.

Experiment IV. To answer question @, we design the fol-
lowing experiment. For each player in the six sophisticated
games, we use the action deviation attack to train an adver-
sarial policy against the policy learned by PATROL and the
self-play methods. Then, we follow the comparisons in exper-
iment III to compare the robustness and verify whether the
considered methods could provide a robustness guarantee.
Additional experiments. In addition to the four experiments
designed above, we also evaluate the iteratively adversarial
retraining defense mentioned in Section 4. We present the ex-
periment results in Appendix B.3, demonstrating this defense
cannot even converge to a fixed point on both toy games and
sophisticated games. We further demonstrate the robustness
of PATROL against a new adversarial policy attack [27] specif-
ically designed for two-player competitive games with non-
zero-sum payoffs. Due to the page limit, we also detail this
experiment and the corresponding results in Appendix B.4.
Finally, as mentioned in Section 5.1, we also conduct an effi-
ciency evaluation and a hyper-parameter sensitivity test and
present the results in Appendix B.2.

5.3 Experiment Result

PATROL vs. baseline approaches in toy games. Fig. 2
shows the final policy of the selected methods in seven toy
games. As we can see from the figure, none of the baseline
approaches could converge to a fixed point in all the settings,
where convergence means that the bars of the same method
have the same or very similar heights. As mentioned above,
the policy in the matching pennies game refers to the prob-
abilities of each player playing head and tail; the policy in
the Euclidean games is the value choices of x and y in the
value function. For instance, in game @, none of the baseline
methods could converge to a fixed point for the 1st player.
Overall, the baseline methods converge in at most 5 out of 14
settings. Even in the cases where self-play converges, it may
not converge to the NE point. For example, both self-play
and self-play-VA converge to the NE point only in two set-
tings. These results indicate that even in simple non-repeated
matrix-form and Euclidean games, the classical fictitious play
and self-play-based methods cannot guarantee convergence,
let alone converge to the NE point.

In comparison, as is also shown in Fig. 2, PATROL is able
to converge to the joint policy at the NE point in all selected
games. This result shows that PATROL could consistently
search for the NE point when the game properties change
and thus verifies the effectiveness of our algorithm design in
different setups (discrete/continuous action space, symmet-
ric/asymmetric action space, and convex-concave/non-convex
non-concave value function). In addition, it also validates
our theoretical analysis in Section 4.4 that PATROL is guaran-
teed to converge to the NE point even when the value func-
tion is non-convex and non-concave. In summary, Fig. 2
demonstrates the superiority of PATROL over the self-play
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Figure 2: The final policy of PATROL and the comparison baselines in toy games. The left graph in each game is the 1st player.
We run each method four times in each setup and draw the converged result of each run as one bar in the figure.
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Figure 3: The robustness comparison between PATROL and three baselines against the PPO-based attack. x-axis is the training
time step, y-axis is the winning rate. The darker solid lines represent the average winning rates of adversarial policies during the
training process, and the lighter bands indicate the variations between the maximal and minimal winning rates. The dotted line is
the winning rate of the victim’s original opponent trained against the current victim policy. The p-value is the paired t-test result
between PATROL and the baseline with the lowest attack winning rate.

mechanism in converging to the NE point. In the following
experiments, we will further demonstrate the utilities brought
by this superiority in different aspects (i.e., generalizability
and adversarial robustness).

PATROL vs. baseline methods in sophisticated games. Ta-
ble 2 shows the results of our policies against those trained by
the original version of self-play. As we can first observe from
the upper half table, PATROL_1 has a lower winning rate when

playing against PATROL_2 than playing against Self-play_2
(Column 2 vs. 3), indicating PATROL_2 is a stronger response
to PATROL_1. Similarly, when playing against PATROL_1,
PATROL_2 is a stronger opponent than Self-play_1 (Column
4 vs. 5). This result shows that, for every policy trained by
our method, its own opponent policy is a stronger response
than the self-play policy. On the contrary, the lower half ta-
ble shows that when playing against the self-play policies,



Games PATROL_1 vs. PATROL_2 Vs. Games PATROL_1 vs. PATROL_2 vs.
PATROL_2 | Self-play_2 | PATROL_I | Self-play_1 PATROL_2 | Self-play-VB_2 | PATROL_I | Self-play-VB_1
You-Shall-Not-Pass 24.0% 42.0% 76.0% 86.0% You-Shall-Not-Pass 24.0% 79.0% 76.0% 90.0%
Kick-And-Defend 56.0% 5.0% 1.0% 51.0% Kick-And-Defend | 56.0% 94.0% 41.0% 73.0%
Sumo-Humans 29.0% 55.0% 72.0% 80.0% Sumo-Humans 1 _#.0% sk B s
Sumo-Ants 50.0% 54.0% 30.0% 40.0% Pong 51.0% 96.0% 29.0% 96.0%
Pong 51.0% 52.0% 49.0% 53.0% StarCraft 11 52.0% 94.0% 48.0% 98.0%
StarCraft IT 52.0% 76.0% 48.0% 74.0% Games Self-play-VB_1 vs. Self-play-VB_2 vs.
Games Self-play_1 vs. Self-play_2 vs. ) PATROL_2 | Self-play-VB_2 | PATROL_1 | Self-play-VB_1
PATROL_2 | Self-play_2 | PATROL_1 | Self-play_1 You-Shall-Not-Pass 10.0% 56.0% 21.0% 44.0%
You-Shall-Not-Pass 14.0% 18.0% 58.0% 82.0% Kick-And-Defend 6.0% 3.0% 5.0% 95.0%
Kick-And-Defend 44.0% 45.0% 14.0% 54.0% Sumo-Humans 17.0% 50.0% 55.0% 69.0%
Sumo-Humans 22.0% 44.0% 77.0% 79.0% Sumo-Ants 36.0% 37.0% 27.0% 41.0%
Sumo-Ants 41.0% 2.0% 28.0% 28.0% Sy ‘2‘-822 2832” 283 Zggzc
Pong 47.0% 50.0% 48.0% 50.0% - - - -
StarCraft IT 26.0% 50.0% 24.0% 50.0%

Table 2: The winning rates of policies trained by PATROL vs.
self-play policies in six sophisticated games. PATROL_i stands
for the i-player’s policy obtained by our method. Self-play_i
is the i-th player’s policy trained by self-play. Note that we
run each setup four times and report the mean result.

Games PATROL_I vs. PATROL_2 Vs.
PATROL_2 | self-play-VA_2 | PATROL_I | self-play-VA_]l
You-Shall-Not-Pass 24.0% 40.0% 76.0% 80.0%
Kick-And-Defend 56.0% 89.0% 41.0% 76.0%
Sumo-Humans 49.0% 57.0% 72.0% 73.0%
Sumo-Ants 50.0% 51.0% 30.0% 46.0%
Pong 51.0% 81.0% 49.0% 82.0%
StarCraft I 52.0% 98.0% 48.0% 100.0%
Games self-play-VA_1 vs. self-play-VA_2 vs.
PATROL_2 | self-play-VA_2 | PATROL_I | self-play-VA_1
You-Shall-Not-Pass 20.0% 31.0% 60.0% 69.0%
Kick-And-Defend 2.0% 1.0% 11.0% 99.0%
Sumo-Humans 42.0% 48.0% 60.0% 67.0%
Sumo-Ants 41.0% 47.0% 35.0% 36.0%
Pong 18.0% 49.0% 19.0% 51.0%
StarCraft 1T 0.0% 56.0% 2.0% 40.0%

Table 3: The winning rates of policies trained by PATROL vs.
those trained by self-play-VA in six sophisticated games.

PATROL always achieves better performance, indicating the
strong responses of self-play policies are policies trained by
PATROL rather than their own opponent policies.

Table 3 and 4 further show the performance of our agents
playing against those trained by two variations of the self-
play, respectively. The results are consistent with those in
Table 2. Tables 2-4 reveal that PATROL excels in identifying
strong responses for both its own policies and policies trained
by three self-play-based baseline methods, indicating that
PATROL is superior to these techniques in searching for NE
points in sophisticated simulation games.

In Table 5, we show that our policy has a higher winning
rate than the baselines when playing against the same zoo
agent in the selected games except StarCraft II (because we do
not find a zoo agent for StarCraft IT ). Together with the results
in Table 2-4, we can also conclude that policies obtained by
PATROL have stronger generalizability than the policies of
baseline methods when playing against normal policies.
Defending against the PPO-based attack. Fig. 3 shows the
winning rate of adversarial policies trained against PATROL

Table 4: The winning rates of polices trained by PATROL vs.
those trained by Self-play-VB in six sophisticated games.

Z0o_1 vs. 700 2 vs.
2 [ Self-play_2 [ self-play-VA_2 [ Self-play-VB_2 | BATROL_I | Seli-play_I | self-play-VA_I | Seli-play-VB_I
28.0% 18.0% 62.0% 32.0% 38.0% A o

Games

You-Shall-Not-Pass

52.0% 84.0% 62.0% 30.0%

Kick-And-Defend S 84.0%
Sumo-Humans 26.0% 55.0% 68.0% 21.0% 5. 81.0%
Sumo-Ants X 25.0% 26.0% 40.0% 21.0% 2 24 28.0%
Pong 48.0% 54.0% 92.0% 98.0% 47.0% 52.0% 88.0% 93.0%

Table 5: The winning rates of a zoo agent against polices
trained by the selected methods in five sophisticated games.

and three self-play variations on six sophisticated games. The
results show that the adversarial policy trained against our
policy has a lower winning rate than those trained against the
baseline methods. These results confirm that PATROL is more
robust than the baselines against the PPO-based attack. The
results in Sumo-Ants are less distinguishable. As discussed
in [25], due to limited attack space, adversarial policy attack
in this game is naturally hard to succeed. Note that when
training an adversarial policy PATROL and baselines in the
same setup, we only change the victim policy and keep all the
hyper-parameters the same. This ensures that the observed
differences in attack performance are because of the choice
of victim policy rather than the attack hyperparameters.

Fig. 3 also shows, for victim policies given by PATROL,
the mean attack winning rate is consistently lower than the
winning rate of the victim’s original opponent in all setups.
This result shows the PPO-based attack cannot find a stronger
response for our policy than its original opponent policy, in-
dicating PATROL provides a lower-bound performance for its
trained policy against the PPO-based attack. In contrast, the
blue lines in Fig. 3 show that the mean attack winning rate
is higher than the winning rate of the original opponent for
self-play victim policies, indicating self-play cannot provide a
robustness guarantee. Similarly, we also observe that the two
variations of self-play fail to provide a robustness guarantee.
Defending against the action deviation attack. Fig. 4 de-
picts the attack success rate of the action deviation attack
against policies trained by PATROL and the baseline methods.
Similar to Fig. 3, our method forces lower attack winning
rates on all games, verifying PATROL’s superiority in robust-
ness against the action deviation attack. Additionally, as
shown in Figure 4, despite having a stronger exploitability
than the PPO-based attack, the action deviation attack still
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Figure 4: The robustness comparison of PATROL and baselines against the action deviation attack in sophisticated games.

cannot train a stronger response to our policy. This result
further confirms our theoretical analysis in Section 4.4 that
our method is guaranteed to search for a robust policy at the
NE point with a certified lower-bound performance. Together
with the result in Fig. 3, we can safely conclude that PATROL
is more resilient to existing adversarial policy attacks than the
self-play mechanism and its variations.

Robustness vs. generalizability. Our experiments indicate
that PATROL exhibits better convergence to a NE point than
the baseline methods, which enhances both robustness and
generalizability. It is commonly believed that robustness and
generalizability are typically a trade-off. However, some
counterexamples exist, such as adversarial retraining, which
is a widely-used defense mechanism in supervised learning
that acts as regularization and can improve the generalizability
of the classifier [26]. Similarly, defense distillation [58] has
been shown to improve the generalizability of models on
certain datasets. We have made a similar observation for
PATROL. Nevertheless, as with adversarial retraining, this
benefit comes at the cost of computational efficiency.
Qualitative studies. We show the videos of the agent
trained by PATROL against its adversarial agents and the
agent trained by PATROL against the adversarial agents trained
against the self-play in the selected MuJoCo games in https:
//tinyurl.com/y4c9hdm9. In general, the adversarial agent
trained against PATROL’s agent no longer establishes weird
behaviors, indicating PATROL’s agent does not contain obvi-
ous defeats that can be exploited by the adversarial attack.
In contrast, the adversarial agent against self-play still takes

weird actions, but PATROL’s agent ignores these actions.

6 Other Related Work

Adversarial perturbation-based attacks. As mentioned
in Section |, prior to adversarial policy attacks, researchers
borrow the idea from the adversarial attacks against DNNs
(e.g., [16,19,43]) and perturb the environment to trigger
the failure of a victim agent. Specifically, some pioneer
works [7,29] leverage attacks against DNN [16,47] to add
an adversarial perturbation to the environment at each time
step and force the victim player to fail in a single-player en-
vironment. Follow-up works explore improving the attack
efficiency [35,41,62,68] or practicability [85,93]. More re-
cent works [42,70, 88] design techniques to enable optimal
attacks under this threat model. Going beyond single-player
games, Lin et al. [40] further extend the above adversarial
environment attacks to multi-player collaborative games. In
this work, we remove the attacker’s privilege of manipulating
the environment, which is more realistic and cost-effective.

Data poisoning attacks. Another line of research general-
izes data poisoning attacks [14, 15,65] to DRL. Specifically,
pioneer works [45,46,92] poison a player’s training episodes
by manipulating its reward and thus training non-optimal poli-
cies. Yang et al. [86] and Kiourti ef al. [33] further leverage
environment and reward manipulation to implant a backdoor
into a policy network. During the testing phase, when a trigger
is presented in the environment, the victim policy establishes
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ill-defined behaviors. Most recent work [75] design a trojan
attack against two-player games. Rather than perturbing the
environment or reward, this attack designs the trigger as an
adversarial player’s action. The victim player behaves ab-
normally whenever the adversarial player takes the trigger
actions. Since we do not assume access to a victim policy’s
training process, we do not consider trojan attacks.

Existing defenses. Pioneer defense works [8,9,48,59] adopt
adversarial retraining [26] to defend against adversarial en-
vironment attacks. By retraining the victim policy in the
perturbed environment, this defense improves the policy’s
resilience against environmental manipulations. More recent
works [27, 84] extend this defense to our threat model and
propose to robustify a victim policy by retraining it against
the corresponding adversarial policy. As discussed in Sec-
tion 4, this defense can be easily bypassed by training a new
adversarial policy against the robustified victim. Besides ad-
versarial retraining, some other recent research [36,81-83,89]
extends existing certification techniques to provide certified
robustness against adversarial environment or data poison-
ing attacks. Due to different threat models and defense goals,
these techniques cannot provide certified defenses in our prob-
lem. A final line of works [22,61, 87] leverage game theory
and maximin optimization to defend against adversarial per-
turbation attacks in single-player RL tasks. They introduce
an attack player to control the environment perturbations and
transform the original environment into a two-player com-
petitive game between the original RL player and the attack
player. They train a robust policy for the RL player by solving
a maximin optimization: maxyminga V¥ (s), where v and o
is the RL and the attack player. As discussed in Section 4.2,
solving only the maximin or minimax optimization cannot
guarantee the convergence to a NE point and thus cannot
provide a robustness guarantee in our problem.

7 Discussion

Other defeats of Self-play. In addition to lacking robustness,
existing works also discuss other deficiencies of self-play. For
example, Balduzzi et al. [4] mentioned that self-play cannot
establish transitivity. Jaderberg et al. [30] pointed out that
self-play is limited in emerging human-like behaviors. While
our focus differs from these works, it is important to note
these additional limitations of self-play.

About Our Robustness Guarantee. As discussed in Sec-
tion 4, PATROL guarantees its obtained agent has a lower
bound against arbitrary adversarial agents (i.e., Vi(nl,n2) in
Eqn. (3)), which varies game by game. We cannot guarantee
it is larger than a specific winning rate. This is similar to
certain certified defenses for supervised learning [18, 80, 90],
which certify their model has a lower-bound accuracy but
cannot guarantee it is higher than a specific value.
Extension to extensive-form games. Another two-player
competitive game widely existing in the real world is the

extensive-form game (e.g., Go [66]), Poker [37]). Different
from the Markov game, where two players take action simul-
taneously, in an extensive-form game, each player takes turns
observing the state and taking action. Although no work has
done this, as discussed in [27], it is not that hard to extend
the existing adversarial policy attacks to this game. Similarly,
extending PATROL to extensive-form games and providing
an empirical defense is also straightforward. We can just
replace the PPO algorithm in Algorithm | with a state-of-
the-art policy training method in the extensive-form game
(e.g., counterfactual regret minimization [23]). However, due
to differences in game setup, the robustness guarantee of our
method no longer holds for the extensive-form game. Our
future work will investigate redesigning PATROL to provide
such a guarantee for extensive-form games.

Generalization to multi-player environments. Going be-
yond two-player games, some DRL tasks involve multiple
players, such as Dota [54] and StarCraft [69]. In such games,
the players are assigned to two teams. Players of the same
team cooperate to compete against the other team. General-
izing PATROL to a multi-player environment is challenging
because the dependencies between players are much more
complicated than in a two-player game. In the future, we will
again draw insights from the game theoretical theorems [57]
about finding NE in a multi-player game and extend PATROL
to train robust policies in this setup.

Limitation and future work. Our work has a few limita-
tions. First, our method introduces additional computational
cost compared to the state-of-art approach. In this work, we
improve the efficiency by optimizing our implementation.
Our future work will explore further accelerating the training
process by selecting better initial states (e.g., using policies
pretrained by self-play as the initial policies). Second, we
assume the value function is smooth and differentiable. In
some special cases, the value functions are non-smooth [67].
Our future work will also investigate adapting our method
to these games. Finally, besides the Markov game, some
recent works [17,28] also model a two-player competitive en-
vironment as a Stackelberg Game and develop policy training
methods with better stability than self-play with PPO. In our
future work, we will also explore whether generalizing our
method to this model could provide a more stable algorithm.

8 Conclusion

We present PATROL, the first provable defense against adver-
sarial policy attacks in two-player competitive games. Tech-
nically, we propose a novel policy training algorithm to find
the NE point, which provides a robust policy for each player.
We theoretically prove that PATROL is guaranteed to find the
NE point in complicated RL environments. Empirical evalua-
tion shows that PATROL outperforms existing policy training
methods in finding the NE point, policy generalizability, and
defending against existing attacks. With the theoretical analy-



sis and empirical results, we conclude that a policy training
method converging to the NE point provides policies with a
robustness guarantee against adversarial policy attacks.
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A Additional Technical Analysis

A.1 [Iterative Adversarial Retraining

Iterative adversarial retraining expresses the following pro-
cess. Given a pair of initial policies (mj), ©()), iteratively re-
training 7} against ;" and retraining 7 against 7}, ;. After T
rounds, we can obtain a series of polices for the victim player
{m},..,m}} and the adversarial player {n{,..,n%}.

First, we show that this method cannot converge to a fixed
point even in a simple matrix form game. Consider the Match-
ing pennies game in Section 5.1, without loss of generaliz-
ability, we treat the 1st player as the victim player with a
policy my, where Pr’(H) = p;j and Pry(T) = 1 — pg. The at-
tacker trains an adversarial policy 7t8‘ for the 2nd player where
Pr%(H) = p§. According to [25,84], the adversarial training
solves the following objective function: argmax g [—popd +
(1=pg)po+ (1= py) — (1= py)(1— pg)] and the optimal
solution is p§f = 1 if pjy < 0.5 and p§ = 0 if py; > 0.5. Sup-
pose py < 0.5 and p = 1, retraining the victim policy against
g solves the following optimization: argmax P pipg—(1—
py)pi — o (1= py) + (1= pY)(1 — pg)), with the optimal
p} = 1. Then, we can solve these optimizations to update
py =0, pb =0, py =1, etc. As we can observe from the
above analysis, p; and p®* switch between 0 and 1 and thus
cannot converge to a fixed point. Worse still, even though
this solution converges in some cases, it cannot ensure that
the final policy is stronger than the initial policy because of

the non-transitivity [71]. Specifically, given 7 beats T* |,
7" beats 7y and 7}, | beats ¥, we cannot derive neither 7t |

could beat TC?‘_I nor T 1 is stronger than w;. Similar, we also
cannot derive that w¥ is stronger than nf‘_l. As such, we can-
not conclude that iterative adversarial retraining could keep
searching for policies close to the NE point.

A.2 Proof of Lemma 1

Lemma 1. Given an approximation an of V! obtained from
M > 8%log% episodes, we have Pr(|V! —Vn'| <g)>1-p.
Proof of Lemma 1. As is mentioned in Section 4.3, because
the ground-truth V! is unknown, we first utilize the Monte
Carlo approximation to approximate V! and obtain V'!. Then,
we learn a DNN an to fit V! via Eqn. (7). By the bounded
reward assumption (i.e., the reward is within a range [rg,r;])
and Hoeffding’s inequality [77], we have

Pr(V! =7 <e) > 1—2¢M/C )
where C is a constant. As such, if M > 8%log%, we have

Pr(V =7 <e)>1-2e2M/C> 1) (10)

According to the universal approximation theorem of
DNN [79], when approximating a target function in any form,
by selecting the DNN with enough capacity, one could guar-
antee that the approximation error can be arbitrarily low. In
our case, we can find a proper DNN model to approximate
V! with an approximation error that is lower than €. As such,
we have the following inequality max |V! — an | < €1, where
€] < €. By combining this inequality with Eqn. (10), we have
Pr(lV V| <e)>1—-p. O

A.3 Proof of Theorem 2.

First, we prove that with a bounded learning rate, each pair
of policy (TE}(, TI:]%) could guarantee converge to the NE point,
when using the true value function. For the notation simplicity,
we drop k and use one policy pair for the proof. Using the PPO
algorithm to update n} against n% (the strongest opponent in
the rest K — 1 policy pair), we have the following inequality.

V(i 75) —Ly (nl1.75)| < CLmax, TV (w] (-Js)l|m}, 1 (1)))*, (A1)

where Ly (n}, . m2)=V!(n!,n2)+C2and C1 = (143)2 >0,
where i represents the ith iteration. The proof of this in-
equality can be found in [63]. Substituting L (x}, |, 72)
into the Eqn. (11) and apply the absolute value linequality
|la| = |b]| < a—bl, we get

— CL(max; TV (] ()|} (1)) +1C2| < (V! (mfyy,73) =V (m], 7))

< Cl(max, TV () (-]s) [ty (1s)))* + €2
12)
from this inequality, we also have

—Cl||n} —m} |2 +|c2| <Cl|jm} — =l | +]C2].  (13)
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(a) You-Shall-Not-Pass. (b) Kick-And-Defend. (c) Sumo-Humans.

(d) Sumo-Ants. (e) Pong. (f) StarCraft II.

Figure 5: The screenshot of the selected environments. In each game the blue agent is the player_1 and the other is the player_2.

Similarly, updating 77 against 7t} (the strongest opponent to
n?) with the PPO algorithm gives

—C3||mf — 77, ||* +|C4| < C3||mf — 7 [P+ [C4. (14

Denote g} and g? as the of V! w.r.t. ©} and 713, we have

1 1ol 2 ) 3 .
T, — % =M;g and ©7, | — T = —1;g;, Where 1; is the

learning rate at iteration i. If 1; is bounded by

nillg!|? < —cm?|lgh])> + 2],

1s)
nillg? 11 > C3n7|g7 |1> + |C4],
we can obtain the following inequality
<gi My —m > <Vimy ) - Vi), 6

2 2 2 Vi 2 Vi 2
< g Ty — T > 2V (M, Ty y) — Vo (T, 7).

With the inequality in Eqn. (16), we then prove the conver-

gence of (1}, 7?) under the condition of Eqn. (15). Specifi-

cally, we first prove the distance between the current (7}, 7t7)

and the optimal (7}, 7t2) keeps decreasing as training iteration
i increases. Expanding the squared distance gives

lImd sy —mh P == [ —mi | +2n < gf @l —ml > +nillgf P (A7)
According to the inequality about ' in Eqn. (16), we have
<ghnl —nl > <vial n?)—vixl n?). (18)
Plugging Eqn.(18) into Eqn.(17) gives
Iy = m P < [fmj =y |+ 2na (V! () = V() +nFllgi 1P (19)
Similarly for TI:%, we have
lIniy —m2|? = lInf — =2\ —2n; < gf, 7 — 72 > +nfllgf 2. (20)
According to the inequality about 7% in Eqn. (16), we have
<gm?—n?>>vinlnd)-vila?). 21)
Then, we can also derive
NIy = 2> < [fmf — 2|2 = 2ni (V! (g, mF) =V (my,md)) 717 (22)
Adding Eqn. (19) with Eqn. (22) gives

Iy =P + |y — w22
<l = ml P+ = wl] P —2ne (V' (el w) =V () 23)
Vi (mn?) =V (f,m)) +n7 (Iled 1P + 1187 1) -
Recall the NE condition gives the following inequality

viml a2y <vli@l n2) <vi(al x?).
(T, m5) SV (my,5) <V (T, ) 24)

Plugging Eqn. 24 into Eqn. (23) gives
limioy =l o+ [|tyy — 32

s Y iy

<lmp —m P i = =2 (v () =V () + 7 s 1P + lg?I1P).-
@

Let E; = VI(nl,7?) — V!(n!,n2). According to Line 5&6 in
Algorithm 1, we can also derive E; > 0. If the learning rate

satisfies 1; < —5—+——, we have
< LT ee
2 2 2012 2 2 2012
Iy = [* + (|77 — 2] < [ — w4 | 1f — =2 (26)

Combining the condition above with (15), we have if the
following condition holds

CH 1 nin 2F; Ic2| 2F; @)
c3llgglr = [& 12+ 111127\ CHllg - crdllgHP +1lgflP) )

the difference between (), 7

during the training process.

With this property, we then prove that the difference de-
creases to zero with a reasonable large number of policy pairs
K. Suppose the training process converges to an accumu-
lation point (T}, ®2), such that its difference with the NE
policy no longer decreases. At this point, we have Er = 0.
This is because, if E7 > 0, one could always find a proper
learning rate 17 such that (., |, 7% ) has a lower distance
to the NE policy than (7)., 72), indicating the training has not
converged yet. As such, when training converges, we have
Er =V!(n},n2) - V!(xnl,72) = 0. With a reasonable large
K, we have 72 and 7t} equals to argmin_. (V! (%}, 7)) and
argmax, (V! (n!,n2.)). This gives the following equality

V! (n), argmin s (V! (nh, 7%))) = V! (argmax; (V! (', 73)),7%) . (28)

) and (m!,72) strictly decreases

We also have the following inequality
Vl(n;-,argminng (Vi(rh,m2)) <Vinh,n2) <Vv! (argmax (vi(r!,n3)),n2).
(29)
Combine Eqn. (29) and Eqn. (28), we can derive

V! (ny, argming (V' (np,7%))) = V! (n}, 23) = V' (argmax (V! (n',77)),77).
(30)
This equation shows the minimax value and maximin value
are the same at (mh,m2). It also gives V!(n!,73) <
Vi(nk,n2) < vli(znl,7?) for any ©! and 2. As a result,
(nh.,72) is the NE policy of V'!.

In real-world RL tasks, the ground-truth value function
is unknown. As specified in Section 4.3, we use a neural
network an to approximate the V!. According to Lemma 1,
the approximation error is bounded by €. Plugging Lemma 1,
we have V!(zn!,72) —e < V!(n}, 7)) <V!(n),n?) +e, for
all ¢! and 72, With a bounded learning rate, our algorithm is
guaranteed to converge to a e-approximate NE point. ]
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Figure 6: Iteratively adversarial retraining results of 10 rounds.
In each game, we start with using player_1 as the adversarial
agent and player_2 as the victim agent.

B Additional Experiments

B.1 Additional Experiment Setup

Hyper-parameters. For the hyper-parameters shared by
PATROL and the baselines, we use the same set of choices.
We follow [25], [55], and [69] to set hyper-parameters. For
the You-Shall-Not-Pass game, we use a multi-layer percep-
tron with the architecture of MLP-380-64-64-17. It has four
layers and the numbers indicate the number of neurons in
each layer. The architecture of the other games are: MLP-
380-128-LSTM-128-MLP-128-17 for the Kick-And-Defend
game, MLP-395-128-LSTM-128-MLP-128-17 for the Sumo-
Humans game, MLP-137-128-LSTM-128-MLP-128-8 for the
Sumo-Ants game, MLP-13-64-64-2 for the Pong game, and
MLP-754-128-128-128-165 for the StarCraft II game. For

(—PATROL
00

==Sclf-play) o (=PATROL =—=Sclf-play)

)

Winning rate (%)
Winning rate (%)

0 1.5 3.0 0 1.5 ; 3.0
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(a) MuJoCo Player 1 as victim. (b) MuJoCo Player 2 as victim.

Figure 7: The robustness of PATROL and Self-play against the
attack in [27] in the You-Shall-Not-Pass game.

toy games, we directly learn the policy without using a neural
network. We use the ADAM optimizer with a learning rate of
0.00001 for the StarCraft IT and 0.0001 for all the others.

B.2 Runtime & Hyper-parameter Sensitivity

Runtime. To compare the computational cost of PATROL and
Self-play, we record the training time of both methods on
the MuJoCo games using the same machine (a server with 2
AMD EPYC 7702 64-Core CPUs and 4 NVIDIA RTX A6000
GPUs). The average runtime to the convergence of PATROL
is about 1.8 x over the self-play baseline (41.5h vs. 24h on
You-Shall-Not-Pass and 30h vs. 18h on Sumo-Humans).
Sensitivity. To test the sensitivity of PATROL to the number
of policy pairs K, we train three policies with K = 1/2/3
for each player in the You-Shall-Not-Pass game, play them
against the same self-play policy, and record the winning
rates: PATROL_1 vs. Self-play_2: 33.0% (K = 1), 42.0%
(K =2),44.0% (K = 3); PATROL_2 vs. Self-play_1: 81.0%
(K =1), 86.0% (K =2), 86.0% (K =3). K=2/3 gives
stronger policies than K = 1, verifying the efficacy of training
multiple policy pairs. Besides, K equals 2 and 3 give similar
results, confirming our statement in Section 5.1.

B.3 Iteratively Adversarial Retraining

We run the iteratively adversarial retraining on four games
and show the results in 6. For the toy game, we report the
trained policy (i.e., value of X and Y), and for other games,
we show the changes in the adversarial winning rate. As
shown in the figure, iteratively adversarial retraining fails to
converge to a fixed pair of policies on all games.

B.4 PATROL against a New Attack

Recently, [27] proposed a new adversarial attack for two-
player competitive games that are not exactly zero-sum. Here,
we turn the You-Shall-Not-Pass game into such a case by
adding intermediate rewards and train the normal policies
with PATROL and Self-play. Then, we use the method in [27]
to attack these policies and show the results in Fig. 7. The
result is aligned with those in Fig. 3&4, confirming the ro-
bustness of our method against this new attack and further
verifying our robustness guarantee.
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