
GuideEnricher: Protecting the Anonymity of Ethereum Mixing Service Users
with Deep Reinforcement Learning

Ravindu De Silva, Wenbo Guo, Nicola Ruaro, Ilya Grishchenko, Christopher Kruegel, Giovanni Vigna
University of California, Santa Barbara

ldesilva@ucsb.edu, henrygwb@ucsb.edu, ruaronicola@ucsb.edu, grishchenko@ucsb.edu, chris@cs.ucsb.edu, vigna@cs.ucsb.edu

Abstract
Mixing services are widely employed to enhance anonymity
on public blockchains. However, recent research has shown
that user identities and transaction associations can be derived
even with mixing services. This is mainly due to the lack of
guidelines for properly using these services. In fact, mixing
service developers often provide guidebooks with lists of
actions that might break anonymity, and hence, should be
avoided. However, such guidebooks remain incomplete, leav-
ing users unaware of potential actions that might compromise
their anonymity. This highlights the necessity for providing
users with a more comprehensive guidebook. Unfortunately,
existing methods for compiling anonymity-compromising pat-
terns rely on postmortem analyses, and they cannot proactively
discover patterns before the mixing service is deployed.

We introduce GuideEnricher, a proactive approach for ex-
tending user guidebooks with limited human intervention. Our
key novelty is a deep reinforcement learning (DRL) agent,
which automatically explores patterns for transferring tokens
via a mixing service. We introduce two customized designs to
better guide the agent in discovering yet-unknown anonymity-
compromising patterns: design proper tasks for the agent that
possibly lead to compromised anonymity, and include a rule-
based detector to detect the known patterns. We train the agent
to finish the task while evading the detector. Using a trained
agent, we conduct a second analysis step, employing clustering
methods and manual inspection, to extract yet-unknown pat-
terns from the agent’s actions. Through extensive evaluation,
we demonstrate that GuideEnricher can train effective agents
under multiple mixing services. We show that our agents facil-
itate the discovery of yet-unknown anonymity-compromising
patterns. Furthermore, we demonstrate that GuideEnricher can
continuously enrich the guidebook via an iterative update of
the detector and our DRL agents.

1 Introduction

The emergence of the Ethereum blockchain has brought atten-
tion to user and transaction anonymity. Since all transactions
are public, a malicious user can link transactions involving
a particular wallet and group that wallet with others used in the
linked transactions. Through such a chain of associations, the
attacker could potentially collect a group of wallets belonging
to the same user, along with the user’s transaction history. This
significantly increases the risk of identity exposure. A breach
of a single public record linking the user’s identity with any of

the grouped wallets would reveal the user’s identity, together
with the wallets and transaction history they own.

To avoid transactions being linked and protect users’
anonymity, blockchain developers design mixing services,
such as Tornado Cash [7], TC Nova [6], Railgun [35], and
Cyclone [9]. These services allow users to obfuscate their trans-
actions by interacting with the mixing contracts rather than
directly transferring tokens from one wallet (or user) to another.
These mixing contracts use sophisticated cryptographic mech-
anisms that hide the link between a transaction’s sender and
recipient, increasing the complexity of chaining transactions.

The efficacy of preserving user anonymity through mixing
services heavily depends on how users employ them. To foster
proper usage, service developers commonly provide users
with an original guidebook before deploying the service. This
guidebook contains a list of action patterns that can lead to
transactions being linked and jeopardize users’ anonymity
and, therefore, should be avoided. We denote these actions as
anonymity-compromising patterns, i.e., a sequence of transac-
tions that enable attackers to link transactions. For instance, an
impatient user may initiate a deposit followed by a withdrawal
with the same amount and without an adequate wait time. These
transactions appear subsequently on the blockchain, and even
though a mixing service might be used, they are easy to link and,
thus, expose the actual transactions the user made to other users
(or wallets). Given that linking transactions is an essential step
for an attacker to unveil a user’s wallets and transaction history,
these patterns potentially compromise the user’s anonymity.

In an ideal case, strict adherence to the original guidebook
provided by the service developers can substantially reduce
the risk of compromising users’ anonymity. However,
recent research [43, 46, 47] has discovered gaps in existing
guidebooks and demonstrated that users have unintentionally
compromised their anonymity through actions that were not
part of the guidebook. These works highlight the importance
of proactively identifying anonymity-compromising patterns
and adding them to the guidebook before deploying the cor-
responding mixing service. Existing methods for discovering
anonymity-compromising patterns operate postmortem, i.e.,
they analyze and link past transactions that have occurred on
the blockchain to extract such patterns. The postmortem nature
of these methods makes it impossible to discover yet-unknown
anonymity-compromising patterns. As a result, these methods
cannot construct and enrich the guidebooks before a mixing
service is deployed.

In this paper, we propose GuideEnricher (mixing service
Guidebook Enricher), a novel method for proactively

discovering anonymity-compromising patterns to enrich
guidebooks. Technically speaking, we first simulate the
Ethereum blockchain together with a specific mixing service.
Then, we design a DRL agent to automatically finish a certain
task (i.e., token transferring) in our simulator. We include two
specific designs to guide the agent in discovering yet-unknown
anonymity-compromising patterns (not included in the
original guidebook) while finishing its task. First, we carefully
design the agent’s task such that, to finish its task, the agent
has a high chance of compromising its anonymity. Second, we
integrate a rule-based detector into the agent’s environment.
The detector monitors the DRL agent’s transactions and identi-
fies those that adhere to the known anonymity-compromising
patterns in the current guidebook. We design a reward system
for the agent that incentivizes task completion and encourages
evasion of the detector’s scrutiny. This design encourages the
agent to explore previously unseen anonymity-compromising
patterns while accomplishing its task. We then train our agent
with the state-of-the-art policy learning method: proximal
policy optimization (PPO) [38]. Furthermore, we design a
second analysis step that clusters the agent’s transactions
and extracts the most representative transactions. Finally, our
human experts will analyze these transactions to find and
summarize novel anonymity-compromising patterns.

Through extensive evaluation and case studies, we first
show the realism of our simulation system and the efficacy of
GuideEnricher in training agents that successfully evade the
rule-based detector while accomplishing their token transfer
tasks. Second, we verify the generalizability of our trained
agents as well as the scalability and efficiency of our method.
Furthermore, we demonstrate that using our trained agent,
in conjunction with a second analysis step, we can efficiently
extract yet-unknown anonymity-compromising patterns
without requiring significant human effort. This allows for
the construction and enhancement of guidebooks before
service deployment or the occurrence of actual anonymity
compromises that impact real users. To the best of our
knowledge, this is the first work that enables proactively
anonymity-compromising action discovery. This is also the
first work that demonstrates the utility of DRL-driven systems
in enhancing user anonymity protection.

In summary, our work makes the following contributions:

• We design and develop GuideEnricher1, a DRL-driven
method that simulates user interactions with mixing
services to facilitate guidebook construction.

• We evaluate GuideEnricher across various task setups
and different mixing services, confirming its realism
and efficacy in training effective agents. Moreover, we
demonstrate that GuideEnricher can facilitate extracting
anonymity-compromising patterns of Tornado Cash
without requiring significant human effort.

1https://github.com/ucsb-seclab/GUIDE-ENRICHER

• We present the usage of GuideEnricher in continuously
enriching the guidebook of Tornado Cash by iteratively
updating the rule-based detector and our evaders.

Note that our proposed method is generalizable across
different mixing services. We first study Tornado Cash in
detail, as it is one of the most widely used mixing services on
the Ethereum blockchain [21]. We then expand our analysis
to TC Nova [6], Railgun [35], and Cyclone [9] to demonstrate
the generalizability of GuideEnricher.

2 Background

2.1 Anonymity in Ethereum
Anonymity Compromises in Ethereum. Ethereum is a
decentralized, public blockchain that facilitates peer-to-peer
transactions among users. One functionality is to transfer a
certain amount of Ether2 (or tokens) from one user’s wallet
to another user’s wallet. Because of its inherent transparency,
historical transaction records, including source and destination
wallet addresses, are visible to all users on the blockchain.
This accessibility, however, raises concerns regarding user
anonymity. More specifically, by monitoring and aggregating
transactions associated with the same wallet address, a
malicious user can link transaction activities of a wallet and
find other wallets that may belong to the same user. If the
attacker can find one public record linking the user’s identity
with any of the grouped wallets, it would reveal the user’s
identity, together with their wallets and transaction history.
Mixing Services. Users of the Ethereum blockchain who want
to enhance their anonymity rely on mixing services. At a high
level, mixing services pool together multiple users’ funds and
then redistribute those funds in a way that breaks the linkage
between source and destination addresses. Specifically, to
initiate a transaction, the sender first deposits their desired
amount of Ether into the mixing service. Then, in a later (and
independent transaction), the user asks the service to withdraw
the Ether to the recipient’s wallet. This approach avoids direct
transfers from sender to recipient on the public blockchain,
making it challenging for attackers to link transactions and
thus protecting users’ anonymity.

The mixing process relies on Zero-Knowledge proof
protocols, such as zk-SNARK [4], to obfuscate transac-
tions while ensuring correctness. zk-SNARK stands for
Zero-Knowledge Succinct Non-Interactive Argument of
Knowledge, a cryptographic protocol that allows individuals
to demonstrate possession of certain information without
revealing the actual contents. zk-SNARKs are non-interactive
zero-knowledge protocols that do not require back-and-forth
communication between the information provider and the
prover. zk-SNARKs offer fixed-size proofs, regardless of
the complexity of the statements they validate. This property

2Ether is the native currency on the Ethereum blockchain.

 https://github.com/ucsb-seclab/GUIDE-ENRICHER

 # Block From Func. call Arguments To

n Addr. A1 Deposit … TC

n Addr. A2 Withdraw Note, Addr. B TC

n TC Internal … Addr. B

User A

Wallet 1

Wallet 2 Tornado CashWithdraw

Note

{Note, Addr. B}

Deposit

Figure 1: Demonstration of money transfer via TC. Users
A and B refer to the sender and recipient. “Addr. A1” and
“Addr. A2” stands for the address of User A’s two wallets. The
last row in the table appears as an internal transaction in the
withdrawal initiated by User A. Each transaction requires a
transaction fee that is omitted in the figure.

makes zk-SNARKs well-suited for resource-constrained
environments such as blockchains, significantly reducing
computational overhead and enabling instant transactions.
Tornado Cash (TC) is a popular anonymity-preserving
mixing service operating on the Ethereum blockchain [7].
It utilizes the zk-SNARK protocol to enable confidentiality
and anonymity. Similar to other mixing services, TC breaks a
transaction from a sender to a recipient into a two-step process,
involving first a deposit into the TC service, followed by a
subsequent withdrawal. As shown in Figure 1, the sender
(User A) first initiates a deposit from their Wallet 1 to TC
by invoking the deposit function of the TC smart contract
with proper arguments. Then, TC’s off-chain components
generate a zk-SNARK proof – denoted as a “Note” – and send
it back to the sender. The sender can initiate a withdrawal
using a different wallet address from the one in the deposit,
by passing the Note and the address of the recipient’s wallet
(Address B) to the TC’s withdrawal function. The TC contract
first verifies the Note’s authenticity. Furthermore, TC ensures
that the withdrawal amount does not exceed the deposited sum.
After validating the withdrawal request, TC makes an internal
function call to transfer the desired amount of Ether to the
recipient’s wallet. This process will appear as two individual
(and independent) transactions on the blockchain (Figure 1).
As a result, the direct link between the sender and the recipient
is broken, enhancing the anonymity of the user’s transactions.

Besides mixing services, the Ethereum blockchain inte-
grates alternative mechanisms to preserve user anonymity.
This includes zk-Rollups [12], and stealth address services [14].
These mechanisms are beyond the scope of this work.

2.2 Deep Reinforcement Learning
DRL trains deep neural network-based agents to solve sequen-
tial decision-making problems in complex environments. For
example, DRL is widely used to train autonomous agents to

play video games (e.g., Go [41] or StarCraft [10]) or solve
networking challenges (e.g., [33, 49]).
Modeling an RL problem. An RL problem involves an agent
continuously interacting with an environment to accomplish
a pre-defined task. At each time step, the agent observes the
current environment state and takes a corresponding action.
The environment receives this action and transits to the next
state. At the same time, the environment rewards the agent,
indicating how much the action helps in accomplishing the
task. The agent’s goal is to learn an optimal policy, such that
taking action following this policy maximizes the agent’s total
reward. In DRL, the policy is modeled as a deep neural network
(a policy network), which takes as input the environment state
and outputs the action. Solving a DRL problem is equivalent
to learning the parameters of this policy network.

Formally, a DRL problem is modeled as a Markov Decision
Process (MDP), represented as a 4-tuple < S ,A , T ,R >.
Here, S and A are the state and action sets. s(t)∈S and action
a(t) ∈ A represent the state and action of the agent at time
t. T : S × A → S is the state transition function, which is
typically unknown. R : S ×A → R is the reward function,
where r(t) represents the reward of the agent at time t. The goal
is to train a policy network π(a|s) for the agent that maximizes
the agent’s total reward. The total reward can be modeled by
the state-value function Vπ(s) defined as

Vπ(s)= ∑
a∈A

π(a|s)(ra
s +γ ∑

s′∈S
T a

ss′Vπ(s′)), (1)

where γ ∈ [0,1] is a discount factor that controls the agent’s
emphasis on current or future rewards. Vπ(s) measures an
agent’s expected total reward starting from state s. An optimal
policy is obtained by maximizing this function, enabling the
agent to receive the maximum reward from the environment.
Proximal Policy Optimization. Instead of directly maxi-
mizing the value function (maxθ Vπ(s)), PPO proposes the
following surrogate objective function:

maxθ E(a(t),s(t))∼πθold
[min(clip(ρ(t),1−ε,1+ε)A(t),ρ(t)A(t))],

ρ
(t)=

πθ(a(t)|s(t))
πθold (a

(t)|s(t))
, A(t)=Aπθold

(a(t),s(t)).
(2)

Here, clip(ρ(t),1−ε,1+ε) denotes clipping ρ(t) to the range of
[1−ε,1+ε] and ε is a hyper-parameter. As depicted in Eqn. (2),
the objective function maximizes the advantage function
A(t) (derived from the state-value function in Eqn. (1)) while
constraining the disparity between an updated and prior policy.
By solving this objective function, the PPO algorithm ensures
a monotonic increase in the agent’s total rewards during
training. Thanks to this characteristic, PPO achieves faster
convergence and better stability compared to other algorithms,
e.g., A2C [31] and A3C [31]. During the training process,
we can only collect the instant rewards without knowing the
expected total reward of the agent (i.e., value function Vπ(s)).
As such, PPO trains another neural network to approximate
the value function. In each interaction, it first updates the value

Block From Func. call To

2 0xa42...E9e8B9 Function_1 Contract_X
2 0xcBD...6E804C Function_2 Contract_A
2 0x12D...CEd384 … 0xe0...bc04e1

6 0x6D...c8cb6f Function_1 Contract_X
6 Addr. A1 Deposit TC
6 Addr. A2 Withdraw TC

…

(a) TC transaction without waiting.

Block From Func. call To

2 Addr. A1 Deposit TC
2 0x12D...CEd384 Function_3 Contract_Z

4 0x6D...c8cb6f Deposit TC
4 0x13...6438DA Deposit TC

6 0x00...FD33cF Function_2 Contract_Y
6 Addr. A2 Withdraw TC

…
…

(b) TC transaction with proper waiting.

Block From Func. call To

2 0xa42...E9e8B9 Function_3 Contract_X
2 Addr. A1 Deposit TC
2 0xe0...bc04e1 … 0x12D...CEd384

8 0x6D...c8cb6f Function_1 Contract_X
8 0x00...FD33cF Function_2 Contract_Y
8 Addr. A2 Withdraw TC

…

(c) TC transaction with insufficient waiting.

Figure 2: Demonstration of a money transfer by User A (from Wallet A1 to Wallet A2) via TC, with different wait times between
the deposit and withdrawal transaction (we show two or three transactions in each block). Figure 2a shows the user’s actions
without consulting the guidebook. Specifically, User A makes a deposit and immediately withdraws the funds, without any waiting
(highlighted with blue canvas). Figure 2b demonstrates that, with a proper wait time, there are other transactions that involve
TC, making it difficult to link a deposit with the corresponding withdrawal. Figure 2c further shows that although User A waits,
no other TC transactions occur before User A makes the withdrawal. As such, the link between the deposit and withdrawal is
still clear. “Contract_i” represents other contracts on the Ethereum blockchain. “Function_i” refers to the invoked function of
the corresponding contract. We omit the internal transactions from TC to the recipient’s wallet invoked in withdrawals.

function using the Temporal-Difference method [22]. Then,
it computes the advantage A using the current value function
and updates the policy according to Eqn. (2).

3 Problem Scope

3.1 Limitations of Mixing Services
Even when using mixing services, a user’s anonymity can still
be compromised. Specifically, users may perform incautious
transactions, as shown in Figure 2a. With the mechanism of
TC in mind, an attacker can search for (and link) a pair of
deposit and withdrawal transactions that indicate a transfer
of funds between two wallets of the same user. Note that we
do not consider attacks against the cryptographic functionality
of zk-SNARK and the implementations of the mixing service.

To prevent the linking of deposit and corresponding
withdrawal transactions (and to protect user anonymity), it is
critical for mixing service developers to provide a guidebook,
specifying a list of actions that potentially break anonymity
(denoted as anonymity-compromising patterns) and how
to avoid them [46, 47]. By cautiously avoiding anonymity-
compromising patterns, users can significantly reduce the risk
that their deposit and withdrawal transactions are linked when
leveraging mixing services. For example, TC recommends
the sender to wait for a certain period of time before initiating
a withdrawal. As shown in Figure 2b, this waiting time allows
more deposits (from other users) to accumulate in the pool,
making it challenging to link deposits with withdrawals.

In fact, mixing service developers typically provide a
user guidebook with instructions to prevent anonymity
compromises. For TC, for example, this guidebook suggests
a certain wait period between deposit and withdrawal and
recommends that users avoid using the same wallet address
for deposit and withdrawal [7]. Unfortunately, anonymity
compromises are still being reported [46], even with this
reported, even with this original guidebook. As mentioned, the

TC guidebook suggests that users wait a certain period (given
as wall clock time) before they withdraw funds. However,
as shown in Figure 2c, it is possible that the user indeed
waits for the suggested time (or even longer). But no other
transactions involving TC might be broadcast during that time.
Hence, it might still be relatively easy for an attacker to link
the two transactions and recover the original money transfer.
Finding this issue will motivate TC developers to expand the
guidebook by asking users to wait for a certain number of
TC-related transactions instead of having a fixed waiting time.

Unfortunately, it is hard to compile a comprehensive guide-
book just through manual analysis and testing [46, 47]. For
example, another rule in the original guidebook recommends
that users should not use the exact same gas price for a consec-
utive pair of deposits and withdrawals. Our method (detailed
in Section 6) finds a pattern that makes multiple deposits with
the same gas price before initiating the withdrawal. This is
a rare usage of TC that mainly happens when a user wants
to conduct multiple deposits and withdraw in a very short
period of time. In other words, observing a large number of
withdrawal and deposits transactions that use the same gas
price in the same or adjacent blocks could allow one to link
these transactions and contribute to de-anonymize the user.

The analysis above demonstrates that discovering yet-
unknown anonymity-compromising patterns outside of the
current guidebook helps make the guidebook more comprehen-
sive and precise. The anonymity of users can be better protected
if developers can identify as many anonymity-compromising
patterns as possible and provide a guidebook on how to avoid
them before deploying the service contract. However, existing
research [46,47] typically identifies anonymity-compromising
patterns in a rearward-looking fashion, i.e., they include and
summarize the anonymity-compromising patterns once they
are observed and exploited on the blockchain. As such, it
is extremely challenging for service developers to provide
proactive guidance before deploying the service.

3.2 Problem Setup and Goals
We consider the setup where we are given a mixing service
on the Ethereum blockchain, together with an original
guidebook. This guidebook contains suggestions for avoiding
the most obvious anonymity-compromising patterns, such
as not using the same address for deposit and withdrawal.
Starting from this guidebook, our goal is to discover more
anonymity-compromising patterns before deploying the
contract. Then, by adding these patterns to the guidebook,
we provide users with a more complete guidebook that
substantially protects their anonymity. Note that, in addition
to discovering as many anonymity-compromising patterns
as possible, we also aim to not compromise the anonymity of
actual users. In other words, we aim to design an automated
system that pinpoints anonymity-compromising patterns in
a forward-looking fashion rather than conducting postmortem
analysis of deposits and withdrawals linked to the same user.

We use Tornado Cash as a concrete instance to introduce
our proposed technique, given that it is one of the most popular
anonymity providers [21]. As demonstrated in Section 5, our
method is generic and can also be applied to other mixing
services or other types of smart contracts.

4 Our Approach

We propose GuideEnricher, a DRL-driven system for
enriching guidebooks of mixing services. At a high level, we
first develop a simulator to replicate the money/token transfer
process on the Ethereum blockchain, with Tornado Cash as
the mixing service. This simulator enables the discovery of
anonymity-compromising patterns without relying on historic
blockchain data and exposing real users. Subsequently, we
design a DRL agent that performs token transfers in the sim-
ulator. We include specific designs that guide the agent toward
exploring previously yet-unknown anonymity-compromising
patterns. In this section, we first provide an overview of our ap-
proach, together with our design rationales. Then, we discuss
the technical details of the simulator and the DRL agent.

4.1 Technical Overview
Building the blockchain simulator. Our simulator replicates
the functionality needed to capture money flows on the
Ethereum blockchain, including token transferring, balance
tracking, etc. We also emulate the functionality of TC as
the mixing service. Furthermore, we implement an original
user guidebook that lists basic anonymity-compromising
patterns extracted from TC’s documentation and existing
studies. Finally, we implement regular users in the simulator
who consistently avoid the known anonymity-compromising
patterns in the original guidebook when making transactions.
Insights of using DRL. Existing methods focus on historical
transactions to extract anonymity-compromising patterns.

To discover yet-unknown patterns, our approach simulates
potential users and collects their transaction traces for pattern
extraction. Specifically, different from the regular users
crafted above, which only take simple actions following a
few fixed rules, we require a user who is “creative” and who
keeps updating its strategy to explore a rich set of action
patterns in interacting with the mixing service. We design this
“creative” user as a DRL agent following the intuition that a
DRL agent can effectively search for proper strategies to finish
a sequential decision-making task. We give the agent the task
of transferring Ether to other users using TC. While learning to
accomplish this task, the DRL agent will automatically explore
different and diverse actions (in the entire action space) as it is
engaging with TC. By analyzing the transaction traces of the
agent, human analysts can then discover previously unknown
anonymity-compromising patterns.

Customized designs of our DRL system. To maximize the
probability of finding interesting patterns, we include two
designs that guide the agent to explore possible anonymity-
compromising actions. First, we craft the task for the agent
so it is easy for the agent to compromise its anonymity when
trying to finish this task. Second, we include a rule-based
detector in the environment that integrates (and looks for)
the discouraged action (anonymity-compromising patterns)
from the guidebook. This detector monitors the agent’s
actions and decides whether they violate the guidebook. The
agent (denoted as the evader) needs to make a sequence
of transactions to evade the detector and finish the given
task. It will receive a positive reward if it finishes the task
without violating the guidebook. Otherwise, it will receive
a negative reward. The agent is pushed into avoiding known
anonymity-compromising patterns. But its task will potentially
introduce de-anonymity. As a result, the agent is forced to
explore yet-unknown anonymity-compromising patterns to
receive a high reward. When analyzing a well-trained evader’s
transaction traces, human analysts are much more likely to
discover yet-unknown anonymity-compromising patterns.
Figure 3 shows an overview of our proposed DRL system.

It is important to note that our ultimate objective is to
discover yet-unknown anonymity-compromising patterns.
However, we cannot directly set this as the agent’s task
because we lack prior knowledge of these patterns before
agent training. Therefore, we take the approach of training the
agent to interact with the mixing contract while encouraging
it to explore actions that have the potential to compro-
mise anonymity. Following the agent’s training, human
experts analyze the agent’s actions to identify yet-unknown
anonymity-compromising patterns. This process is similar
to program fuzzing techniques, where a fuzzer explores
program states and adjusts its strategy toward discovering
vulnerabilities based on feedback signals. Human experts still
play a crucial role post-fuzzing to confirm the discovery of
yet-unknown vulnerabilities and assess their exploitability.

Crowd

Simulator with TC

Evader agent

Reward
State

Action

Detector Guide book

RL environment

Figure 3: Overview of GuideEnricher. The DRL environment
contains the simulator, the detector, and the crowd. The evader
agent interacts with the environment through its actions.

4.2 Simulator and Environment Construction

Ethereum simulator with Tornado Cash. We built a sim-
ulator to replicate the basic functionality of the Ethereum
blockchain, together with the mechanism of Tornado Cash.
As shown in Figure 3, our simulator includes a crowd, where
each user is allocated a random number of wallets (used to store
tokens and invoke smart contracts), each containing a random
amount of Ether (tokens). Users can perform various activities,
such as transferring tokens among their own wallets or across
different users. They can also engage with TC and other simu-
lated contracts. An interaction with a simulated contract (other
than TC) will be recorded as a transaction “from Addr. X to
Other.” These contracts do not implement any functionality nor
do they change the state of the blockchain. We include these
contracts to diversify the transaction types, making our simu-
lator more realistic without introducing too much overhead.

When running a simulation, we also introduce a “crowd of
users” who generate background transactions. The users of
the crowd follow simple (hard-coded) rules when interacting
with the (simulated) TC contract. The main goal is to create
reasonably realistic, valid transactions. For instance, users
cannot withdraw more funds than they have previously
deposited. They also cannot access or withdraw from other
users’ wallets. We describe the rules that drive the behavior of
the crowd in more detail in Appendix C. Despite the simplicity
of our rules, as shown in Section 5, the behavior of crowd users
and real TC users are aligned in key areas such as address
usage frequency and reusability. Note that when training the
evader, we do not update the rules for crowd users. Also, not
all users perform transactions at each step. Instead, we let the
crowd perform a number of actions that meets the minimum
number of crowd transactions required between each action
taken by the DRL agent. We simulate the entire process
of exchanging tokens with TC (introduced in Section 2),
including Note authentication and transaction validation. The
only difference is that, to improve computational efficiency,

we use plaintext Notes instead of cryptographic proofs.
Original guidebook and detector. We design our original
guidebook based on the anonymity-compromising patterns
reported in [46, 47]. A list of these anonymity-compromising
patterns can be found in Appendix A.1. These behaviors are
relatively straightforward ones, and they are summarized
by [46, 47] through a postmortem analysis of historic
transactions. Based on this original guidebook, we implement
a rule-based detector that monitors our evader’s actions and
identifies those that violate the guidebook (that is, transactions
that adhere to the known anonymity-compromising patterns).
DRL environment. As shown in Figure 3, our DRL agent’s
environment includes the simulator with TC, the crowd, and
the detector. The crowd users follow the original guidebook
when interacting with the TC server, fostering a more realistic
blockchain simulation. Our DRL-driven evader operates in
this environment to finish its given task (transferring certain
tokens to other wallets). This is a single-agent environment
in that all the users other than the evader are rule-based.

We build our simulator to be flexible, splitting it into modules
for easy adaptation to various mixing services and blockchains
later on. Specifically, we implement each module as a Python
package with base classes containing the basic functionalities
of that module. Users can simulate new contracts and
blockchains by extending base classes and overriding methods.
For example, the base class for the blockchain module has meth-
ods commit_transaction, get_current_block_id, get_gas_price,
etc. Users can overwrite the base methods and change the logic
based on the blockchain they want to simulate. Similarly, users
can also overwrite the basic functions of the contract module,
such as update_balance, get_balance, etc. See Appendix C
for more details about the base classes and functions. Our
framework also enables the users to customize the architecture
of the evader agent’s policy network (recall that in DRL, an
agent’s policy is a neural network called a policy network).

4.3 Agent Design and Policy Learning

Initialization and Task. We initialize our evader with several
wallets with certain balances (see Section 5.2 for the actual
configurations). We denote this initial asset of the evader as a
“challenge table.” The evader’s task is to transfer all or part of
the given Ether tokens from the challenge table to other wallets
owned by the evader (see Section 5.2 for actual tasks). We
design the task that may lead to anonymity compromises by
crafting the challenge table, the number of transferred tokens,
and the target wallets. In addition, we design the task to be com-
plicated such that the agent needs to take a number of actions
to finish it. This gives the agent the space to search for different
action patterns. For example, the evader is assigned 250 wallets,
in which five wallets have tokens, whereas the other 245 are
empty. As the evader is only given five non-empty wallets, the
agent is likely to use the same wallets for a subsequent deposit
and withdrawal, which can be easily linked together. As such,

this task may lead to anonymity compromises. The task is also
complicated in that the agent first needs to figure out which wal-
lets have tokens. The TC contract only supports fixed deposit
and withdrawal amounts that are predefined in the contract.
We use one token for each transaction in this work. As such,
the agent needs to take multiple transactions to transfer the
tokens from these five wallets to the empty wallets. The agent
needs to transfer all the tokens but can decide the distribution
of targets. We do not specify the recipient wallets or the amount
of tokens received by each recipient. If the agent accomplishes
its tasks while bypassing the detector, it will likely trigger some
yet-unknown anonymity-compromising patterns not covered
by the original guidebook. Human analysts can then extract
them by analyzing well-trained agents’ transaction traces.
State and observation. State S represents the environment
status. Designing an appropriate state space is crucial for policy
training [16]. The key is to include only necessary information
while eliminating potential noise. We also need to constrain
the dimension of the state representation to avoid making the
state space excessively large. In our problem, the necessary
information mainly includes the evader’s status and the current
status of the TC contract. More specifically, the evader’s own
status is described by the overall balance of the challenge table,
the balance of the wallets used in the previous time steps, and
its last action. The status of TC mainly refers to the balance
of the TC contract. This information is necessary for the agent
to make decisions. For example, the agent needs to be aware
of the current balance of a wallet before making a deposit to
TC using this wallet. Otherwise, the agent may take an invalid
action that deposits an amount that exceeds what the wallet
has. In addition, the agent should also be aware of the status of
the crowd, reflected in the status of TC, to better plan its action.
Following this insight, we instantiate the state/observation s
as a vector with 11 elements, including the agent’s previous ac-
tion, current balance, and the current balance in the TC contract
(see Table 4 for a detailed description of the state vector).
Action. We design an action as a vector, a = [a1,a2,a3,a4].
This first dimension has two discrete values a1 = 0/1, indi-
cating either a deposit (0) or withdraw (1) action. The second
dimension a2 is an integer, ranging from zero to a maximum
value (denoted as MAX_WAIT), that represents the number
of transactions the agent will wait for from the crowd before
initiating its next action.3 A larger a2 indicates a longer wait
time, and a2=0 means the agent takes the next action without
waiting. The third (and fourth) dimensions store discrete
values, indicating the deposit (withdrawal) wallet address if
the agent chooses a deposit (withdrawal) action. The possible
values for a3 and a4 are the total number of available wallets
of the agent. Continuing the example above, where the agent
is given 250 wallets (five of them have tokens). The possible

3In the DRL system, one time-step refers to the point when the agent takes
a deposit or withdrawal action. In between two time-steps, the agent can wait
for multiple transactions from the crowd. The actual (wall clock) time interval
between two time-steps of the DRL system can vary.

values for a3 and a4 are 1-250. When the agent chooses a
deposit action, the withdrawal address will be ignored. For
example, an action a = [0, 10, 20, 0] means the agent will
wait for 10 transactions from the crowd before using the 20th

wallet to take the next deposit action. Since the TC contract
only supports fixed deposit and withdrawal amounts that are
predefined in the contract, there is no need for us to specify
the amount in the agent’s actions. Instead, we utilize the fixed
deposit amount that TC uses, which is one token for each
transaction. We acknowledge other choices are also available.
Reward. We design our reward R based on our agent learning
goals: 1) picking up the rules of valid transactions and 2) finish-
ing the task without being caught by the detector. R is a dense
reward that is assigned after each action taken by the agent.
Specifically, the agent will receive a negative reward R=−10
if the current action is invalid (e.g., the amount of tokens to
be withdrawn exceeds the balance of the withdrawal wallet).
If the current action is valid, but the detector identifies it as
an anonymity-compromising pattern, the agent will receive a
negative reward R=−1. Otherwise (the action is valid and it
is not caught by the detector), the agent will receive a positive
reward R = 1. In Section 5, we show that setting 1 (−1) as
the reward (penalty) for bypassing (or being caught) by the
detector is enough to guide the agent to evade the detector with
a high probability. Maximizing this reward will guide the agent
to learn a proper policy that takes valid and stealthy actions to
accomplish its task. Given that it is difficult to add constraints
to the RL process, we do not enforce rules in the DRL agent.
The agents are randomly initialized and learn by trial and error,
guided by rewards. In Appendix A.3, we demonstrate that our
method is robust to the variations in negative reward. We do not
design a final sparse reward awarding the agent for task com-
pletion. Given that our main goal is to guide the agent in learn-
ing to execute valid transactions and discover yet-unknown
anonymity-compromising patterns. In our setting, each round
concludes either when the agent accomplishes the task or when
it reaches a maximum number of time steps (10,000 in our
setup). We have observed that the agent typically completes
the task within 500 steps, making it unnecessary to introduce
an additional reward to incentivize task completion. Different
action choices will affect the reward being received. For exam-
ple, selecting different wallet addresses helps the agent bypass
the rule-1 (Address Match) in the initial guidebook (Table 6)
and thus will be assigned a positive reward.
Policy construction and learning. We model our agent
(and its policy) as a deep neural network, denoted as πθ. This
network takes as input the state vector st and outputs the
desired action at at the current time step. With this modeling,
learning the policy is equivalent to solving for the optimal
parameters of the policy network. As mentioned in Section 2,
the objective function is to maximize the long-term reward for
the agent, i.e., maxθ Vπθ

(s), where Vπθ
(s) is computed based

on the reward defined above (i.e., sum over all the individual
rewards). Here, we use the Proximal Policy Optimization

(PPO) algorithm to train the policy. As discussed in Section 2,
PPO solves the policy parameter θ by maximizing a surrogate
objective function (Eqn. (2)). PPO guarantees the monotonic
increase of the value function and thus improves the training
efficacy and stability of the trained agents.

In each training iteration, before updating the agent’s
policy and value network, we need to run the current policy
in the environment to collect a set of episodes (i.e., policy
evaluations). An episode (round) of the game ends when the
agent accomplishes the task, or the game reaches a maximum
amount of (pre-specified) time steps. We collect the states,
actions, and rewards in this round (s0,a1,r1,s1,....,at−1,rt−1,st)
as an episode. The collected episodes will then be used to
update the policy. Our training process iteratively performs
policy evaluation and update until it convergences, i.e., the
agent’s total reward no longer increases.

5 Implementation and Evaluation

We first evaluate whether our simulation is realistic and
whether GuideEnricher can train effective evader agents to
finish a certain task. Then, we test whether the trained evader
agent is still effective (generalizability) when varying the
number of transferred tokens and target wallets. Furthermore,
we evaluate the effectiveness of our learning algorithm when
increasing the size of the challenge tables (scalability) and
verify our reward design via ablation studies. Finally, we test
GuideEnricher on more mixing services and compare our
selected learning algorithm PPO with other learning methods.

5.1 Implementation and Experiment Setup

Implementation. We use the OpenAI-gym [5] package to
implement our reinforcement learning environment. gym is
a Python library that supports customized designs of DRL
environments. It provides standard APIs for communicating
between the environment and the learning agent, i.e., for
exchanging reward, action, and state information. We imple-
ment our DRL agent with stable-baselines [18], a Python
package that supports constructing deep neural network-based
agents and incorporates multiple learning algorithms,
including PPO. To improve the training efficiency, we use
Ray [27], a distributed reinforcement learning framework, to
wrap our learning algorithm and, thus, enable parallel training.
With this implementation, our training can be completed in
a reasonable time (about 48 hours on average). Regarding the
hyper-parameters (e.g., policy model architectures, training
iteration, learning rate), we select the widely adopted choices
suggested by the original PPO implementation. We keep them
the same across all experiments (see Appendix A.2).
Evaluation metric. Different from supervised learning,
online reinforcement learning does not have a pre-collected
training set. Instead, it performs policy evaluation to collect

episodes and update the agent in each iteration. In our exper-
iment, we follow a commonly used approach and measure
the reward of the evader agent at each iteration. That is, each
time we update the agent during the training, we evaluate the
agent for five rounds and calculate the mean reward. As a
result, we will report the evader agent’s reward changes across
the training process. This helps to reveal the stability and
convergence speed of the training process. We run each agent
training process four times with different initial seeds for the
RL algorithm. We report the mean and variance of the training
results. This helps remove randomness and assess the stability
of the training algorithm. After obtaining an agent from each
run, we then run each of the final four agents against the detec-
tor for 1,000 episodes and record the corresponding rewards.
We also report this testing result to assess the final effectiveness
of the obtained agent. For better visualization, we normalize
the agent’s reward in each round to be between 0 and 1.

5.2 Experiment Design

Exp-0 Realism of our simulator. Before training the DRL
agents, we conduct an experiment to validate the fidelity of our
simulator and the realism of the crowd users. Specifically, we
conduct a differential analysis between our simulator and the
real (on-chain) Tornado Cash contract. To this end, we extract
historical transactions from the real Tornado Cash 10 ETH con-
tract. We then start with an empty, simulated TC contract and
replay each historic transaction on the simulator, as a sequence
based on their time stamps. After executing each transaction,
we compare the balances in our simulator with the state of
the real TC contract. We can assess whether the simulator is
faithful by checking if its balances match the real TC contract.

In addition (and independent of the differential analysis
discussed in the previous paragraph), we count the number of
transactions generated by the crowd during our experiments,
and we compare them with real historical transaction data.
Moreover, we calculate the address reuse rate, a key factor
in linking transactions, for both the real transactions and the
simulated activity in our experiments. Here, the address reuse
rate is the percentage of addresses that have been used for both
deposits and withdrawals. A similar reuse rate between the
experiment transactions and the real ones can demonstrate the
realism of our crowd users.
Exp-1 Agent effectiveness. We first evaluate the effectiveness
of our learning algorithm and the trained evader agent.
Specifically, we set the challenge table for the evader as having
three wallets where each wallet has three tokens. The agent
is given 250 wallet addresses to interact with TC (without
the knowledge of which wallets contain tokens). Its goal is to
transfer all the tokens to any subset of the remaining 247 empty
wallets. We do not constrain the way of distributing the tokens,
i.e., they can be transferred to one or multiple wallets. Note
that we provide the agent with more recipient (destination)
wallets than is strictly needed to avoid the agent over-fitting to

(a) Exp-1. (b) Exp-3 with a single non-empty wallet. (c) Exp-3 with 10 non-empty wallets.

Figure 4: The agent’s normalized reward in Exp-1 and Exp-3. The x-axis is the training iteration, and y-axis is the normalized
reward. The solid lines are the average, and the lighter bands indicate the variations between the maximal and minimal reward.

a certain wallet address range. Meanwhile, we also initialize
the crowd with 250 wallets with 100 tokens each. The users in
the crowd can transfer tokens to each other, the TC contract, or
other simulated (dummy) contracts. With this setup, we train
the agent to accomplish the task and record the agent’s reward
during the training process. As mentioned above, we further
vary the initial seeds of the RL algorithm and train the agent
four times. We report the mean and variance of the agent’s
reward across these trials.
Exp-2 Agent generalizability. We evaluate the trained
agents’ generalizability against the variations in the number
of target wallets and tokens needed to be transferred. First, we
vary the given empty wallets from 247 to 497, 747, and 997
while keeping the same challenge table as Exp-1. The agent’s
task is still to transfer out all nine tokens. These variations
result in three new setups (in addition to the setup in Exp-1).
Second, we fix the challenge table and the empty number of
wallets (247) and vary the task for the agent, i.e., transferring
6, 7, and 8 tokens to the empty wallets. These variations give
another three new setups. In each of the six setups, we run the
four agents trained in Exp-1 for 1,000 episodes and report the
mean and standard deviation (STD) of the rewards. We also
compute the percentages of the number of times that the agent
takes invalid actions and evades the detector in each episode,
respectively. We report the mean and STD of the invalid action
rate and evading rate across the testing episodes.
Exp-3 Algorithm scalability. We assess the scalability of
our algorithm to large challenge tables. First, we create a
challenge table with a single wallet holding 500 tokens, and
the agent is given 999 empty wallets. Second, we also give
the agent 1,000 wallets, with ten wallets containing 50 tokens
each, while the remaining wallets are empty. In both setups,
the agent’s task is to transfer all tokens in the challenge table
to the empty wallets. We train the agent four times and report
its reward changes across the training process.
Exp-4 Ablation study. We conduct an ablation study to test
two aspects of our reward design, utilizing the task setup from
Exp-1. First, we modify the reward by reducing the penalty
strength for invalid actions from −10 to −1 to examine
whether this adjustment can still guide the agent to prioritize

valid transactions. This variation tests whether our learning
method is robust against the changes in relative penalty
strength between taking invalid actions and being caught by
the detector. Second, we introduce an additional reward of
10 at the final state as an incentive for the agent to complete
the task and a negative reward of −10 for not completing the
task. For each setup, we retrain the agent under the revised
reward and record the agent’s testing performance over 1,000
episodes. The performance measure includes task finishing
rate, invalid action rate, and evading rate.

Exp-5 PPO vs. other learning algorithms. We repeat Exp-1
using the A3C [31] and A2C [31] algorithms and evaluate
whether the PPO algorithm provides better results.

Exp-6 Generalizability to other mixing services. To demon-
strate that our framework is general, we test it with more mixing
services. To this end, we start with a comprehensive analysis of
the ecosystem of Ethereum mixing services (Appendix C). Our
analysis yielded three widely recognized implementations: TC
Nova [6], Cyclone [9], and Railgun [35]. Cyclone is essentially
a copy of TC and implements the same functionality, thus, no
changes to our analysis were necessary. We add support for
the other two services in our simulator. Then, we train an agent
– using the same configurations as for Exp-1 — through three
training iterations. Subsequently, we calculate and present
the normalized mean reward attained across TC Nova and
Railgun games. TC Nova [6] is similar to TC but allows users
to deposit and withdraw arbitrary amounts of tokens. We
modify the actions space facilitating TC nova features, and we
expand the observation space of the agent, allowing it to learn
more effectively. We utilize the same guidebook to train the
agent. Railgun [35] uses an implementation that is similar to
cross-chain bridges, letting users deposit an arbitrary amount
of money and withdraw the same amount or less than the orig-
inal deposit on another chain, using a zk-SNARK proof. In our
simulation, we adjust the agent’s action space to accommodate
Railgun features and broaden the observation space, enhancing
its learning capabilities. We also employ a simplified guide-
book to train the agent, ensuring it does not withdraw the same
amount as deposited on another chain (because withdrawing
the same amount makes it easy to link transactions).

Task Reward Invalid rate (%) Evading rate (%)
Exp-1 0.999(0.011) 0.129(1.119) 99.871(1.119)

6 tokens, 247 wallets 0.997(0.000) 0.066(0.662) 91.102(2.851)
7 tokens, 247 wallets 0.998(0.000) 0.062(0.622) 99.938(0.622)
8 tokens, 247 wallets 0.999(0.001) 0.103(0.758) 99.897(0.758)

9 tokens, 497 wallets 0.999(0.007) 0.121(0.817) 99.879(0.817)
9 tokens, 747 wallets 0.998(0.015) 0.213(1.411) 99.787(1.411)
9 tokens, 997 wallets 0.997(0.028) 0.240(2.003) 99.760(2.003)

Table 1: The performance of our agents trained in Exp-1 in
different setups. The first number in each cell is the mean and
the number in the parentheses is the standard deviation.

5.3 Experiment Results

Result of Exp-0. Our differential analysis shows that the
balance in the simulator consistently matches the balance
in the real TC contract after executing every historical
transaction. This convergence strengthens our belief that
the simulation accurately reflects the functioning of the TC
contract, validating the fidelity of our simulator.

We then turn our attention to the activity of crowd users
in our experiments. For the crowd users, we observe a 2.6%
address reuse rate for the experiment transactions. This is only
slightly higher than the address reuse rate observed for the real
transactions, i.e., 2.54%. This result shows the similarity in
behavior between the simulated crowd and real-world users in
terms of the difficulty of linking transactions. In Appendix C,
we conduct a more detailed analysis of address usage between
experiment transactions and real-world ones. Also, note that
users in our experiments (simulations) generally generate
many more transactions than happened in the real world. For
example, we repeat each game round 1,200 to 4,000 times
and collect an average of 1 million to 1.5 million transactions.
This far exceeds the real-world Tornado Cash transactions
(around 45,000). This makes sense and is because we want our
learners to find interesting evasion techniques by exploring
more transaction patterns.
Result of Exp-1. Figure 4a shows the changes in the agent’s
rewards during the training phase. As shown in the figure,
our agent exhibits rapid convergence to near-optimal rewards
while exhibiting fairly low variance. This result demonstrates
the effectiveness of our DRL agent in acquiring transaction
rules and evading the rule-based detector.
Result of Exp-2. Table 1 shows the generalizability of the
agents trained in Exp-1 across different setups. Specifically,
Row 2 (“Exp-1”) corresponds to the agents’ performance in
their training configurations (the setup in Exp-1). Rows 3-5
show the results for transferring a different number of tokens
with the same challenging table and the same number of empty
wallets. The agents’ performance stays almost the same for
transferring eight and seven tokens (Rows 4-5). However, we
observe a relatively large drop (about 8%) in the evading rate
when transferring only six tokens (Row 3). This is because the
task becomes simpler, making it easier for the agent to choose
anonymity-compromising actions in the guidebook. When

Reward design Task finishing rate (%) Invalid rate (%) Evading rate (%)
Our design 100(0.000) 0.129(1.119) 99.871(1.119)
Variation-1 100(0.000) 0.136(1.461) 99.884(2.461)
Variation-2 100(0.000) 0.244(1.242) 94.214(1.173)

Table 2: The percentage of finished tasks and invalid actions
of agents trained with different reward designs across 1,000
trials. Variation-1 represents the reward design that changes
the penalty on invalid action from −10 to −1. Variation-2
represents the reward design that adds an additional final
reward to encourage task completion.

the token number increases, the task becomes more complex
and the agent needs actions to finish a task. This verifies our
decision to choose more complicated tasks, as they are more
useful for agents to discover anonymity-compromising actions
outside of the guidebook. To improve the agent’s evading
performance for simpler tasks, we can fine-tune the agent
with a stronger incentive (or penalty) for evading (or being
caught by) the detector. The last three rows depict the results
of transferring nine tokens from the same challenge table
using a different number of empty wallets. The agents perform
consistently well across all setups. Table 1 shows that our
trained agent can generalize its learned strategies (including
taking valid actions and evading the detector) with changes
in the tasks and the number of empty wallets.
Result of Exp-3. Figure 4b and 4c show the results of the
two challenge table setups in Exp-3. Similar to Figure 4a, the
agent’s reward converges to a near-optimal point without too
much variance. These results demonstrate that our method
can learn effective agents for challenge tables with a relatively
large number of tokens or wallets, confirming the scalability
of our method. In Appendix B.1, we show that an agent trained
with one challenge table may not exhibit enough effectiveness
when applied to other challenge tables. Given that our primary
goal is to discover yet-unknown anonymity-compromising
patterns rather than training exceptional generalizable agents.
We deem our method successful as long as it can train effective
agents for distinct challenge tables.
Result of Exp-4. Table 2 shows the results of our ablation
study. As we can observe from Row 2 (“Our design”) and
Row 3 (“Variation-1”), reducing the penalty strength only
marginally increases the invalid rate. This result indicates that
it is unnecessary to have a stronger penalty for making invalid
actions than for being caught by the detector. In addition, the
evading rate is still high, indicating −1 and 1 are enough for
the agent to learn to bypass the detector. It also shows that
GuideEnricher is robust against the variations in the relative
penalty strength between taking invalid actions and being
caught by the detector. This illustrates the practicality of our
method, as our tool does not require one to meticulously tune
the reward function to ensure the effectiveness of the trained
agents. Row 2 (“Our design”) and Row 4 (“Variation-2”) in
Table 2 further demonstrate that having an extra final reward
does not introduce any extra advantage regarding the ability

to finish tasks. Instead, it actually harms the agent’s capability
to take valid actions and evade the detector. This is because the
final reward is only awarded at the end of a round, which is less
effective than our dense reward (assigned at each time step).
As such, we remove this sparse reward to improve training
efficiency. In Appendix B.2, we further show that varying key
hyper-parameters (the maximum steps and policy architecture)
has minor effects on agent training.
Result of Exp-5. Figure 5 shows that the PPO algorithm
converges to the optimal reward, whereas the A3C [31] and
A2C [31] algorithms do not reach the optimal reward. This
demonstrates the advantage of PPO over other algorithms.
Results of Exp-6. Figures 6 and 7 display the results when
performing Exp-1 (Section 5.2) with TC Nova and Railgun
as the mixing service. In both experiments, the agent’s reward
converges to a high reward value (similar to what we get for
TC), with minimal variation. This underlines that our system
can be extended to other mixing services and allows agents
to meaningfully learn.

6 Utility

We demonstrate the utility of GuideEnricher in two scenarios.
1) Anonymity-compromising pattern discovery: By
analyzing the transaction traces of evader agents, the mixing
server developers can identify yet-unknown anonymity-
compromising patterns without relying on historic traces or
instances that have occurred in the real world. We demonstrate
that we can extract meaningful patterns from our DRL agents.
2) Iterative discovery: By updating the detector and the
evader agent, we can pinpoint more anonymity-compromising
patterns, which can be used to enrich the guidebook.

6.1 Pattern Discovery
Setup and method. We collect all the episodes of our evader
agents trained in Section 5. To increase episode diversity, we
include both the training and testing episodes of all the agents
trained under different setups. With these episodes, we first
filter out the ones with an evading rater lower than 90%, as they
trigger the current detection rules and, hence, are less likely
to contain yet-unknown anonymity-compromising patterns.
Then, we group the remaining episodes using SOTA unsuper-
vised clustering methods, DBSCAN [37] and K-means [1].
The run time of each clustering method is about 3-5 minutes.
We vary the number of clusters and only select the results with
a high silhouette coefficient, a popular unsupervised clustering
evaluation metric [36]. We select six cluster results, each result
has 3-5 clusters. For each set of these clustering results, we
select 10 episodes near the centroid of each cluster as the most
representative episodes for that group. Finally, we manually
examine these representative episodes to find and extract
yet-unknown anonymity-compromising patterns. To roughly
quantify the amount of manual effort needed by our method,

we report the average number of transaction traces analyzed
by our methods to summarize anonymity-compromising
patterns together with the average time needed to analyze one
transaction trace. Note that this second analysis step requires
experts who are familiar with Ethereum and mixing services
(but do not need to be deep domain experts).

We deem an action pattern as an anonymity-compromising
pattern only if human experts can provide a valid explanation
for why it has the potential to compromise anonymity. In future
work, we will design quantitative criteria for determining
anonymity-compromising patterns. Note that we employ
clustering methods in our second analysis step rather than
the graph-based approaches used in existing research [26, 39].
This is because we already filter out the majority of non-related
transactions, eliminating the need to construct a graph that
captures the dependencies of all users on the blockchain.
Results. We find eight action patterns that our agents learned
for bypassing the detector. Among these, we identify three
anonymity-compromising patterns where we can explain
why they can lead to anonymity compromises. Figure 8
demonstrates these patterns. First, all three patterns attack
the detector’s rule that inspects the gas prices of a pair of
deposit and withdrawal transactions. Specifically, this rule
corresponds to the known anonymity-compromising pattern
where a user tends to reuse the same gas price for a pair of
deposits and withdrawals using TC. This makes it easy to link
them. The reason why users’ transactions might exhibit such an
action pattern is that the EIP-1559 protocol [11] of Ethereum
requires a user to specify a gas price when transferring tokens
using smart contracts (including TC). Users are often not
sophisticated enough to manage the gas price. Thus, given that
these transactions happen within a short period of time, they
commonly end up using the same gas price. Also, many users
leave it to their wallet software to select a suitable gas price.
This will also lead to the same gas price being used for multiple
transactions (that happen in close temporal proximity).

As shown in Figure 8a, our agents first learn to perform mul-
tiple deposits before making a withdrawal, all using the same
gas price. The agent bypasses the rule above by avoiding mak-
ing a single deposit and withdrawal. Instead, the agent takes
multiple deposits and then makes one withdrawal. This is ac-
ceptable according to the rule book since there is no 1-to-1 map-
ping between one deposit and withdrawal (that share the same
gas price). Nonetheless, we count this pattern as anonymity-
compromising because it is a very rare transaction pattern. For
an attacker who is familiar with the guidebook, it is not difficult
to determine that such a pattern is a sign of a user who needs to
take frequent actions in a short period of time while trying to
follow the guidebook. Of course, if the user has enough time to
schedule and assign gas prices, they will avoid this pattern nat-
urally. As such, it is relatively straightforward to link deposits
and withdrawals in such a pattern and consider them as orig-
inating from the same user. Our agents find two other patterns
to bypass the same rule: Pattern-2: make one deposit followed

0 100 200 300 400 500
Iterations

−7

−6

−5

−4

−3

−2

−1

0

1

R
ew

ar
d

PPO
A3C
A2C

Figure 5: PPO vs. A3C and A2C.

0 20 40 60 80 100 120 140
Iterations

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

R
ew

ar
d

Figure 6: GuideEnricher on TC Nova.

0 20 40 60 80 100 120 140
Iterations

−1.5

−1.0

−0.5

0.0

0.5

1.0

R
ew

ar
d

Figure 7: GuideEnricher on Railgun.

Block From
Gas

Price Method To

.

.
n 0xa03...49e8B9 g2 Function1 Contract_Y
n 0xcBD...Fe6E80 g2 Function4 Contract_A
n Addr. A1 g2 Deposit TC
n Addr. A2 g2 Deposit TC
n Addr. A3 g2 Deposit TC
n Addr. A4 g2 Withdraw TC

(a) Pattern-1.

Block From
Gas

Price Method To

.

.
n 0xa03...49e8B9 g2 Function1 Contract_Y
n 0xcBD...Fe6E80 g2 Function4 Contract_A
n Addr. A1 g2 Deposit TC
n Addr. A2 g2 Withdraw TC
n Addr. A3 g2 Withdraw TC
n Addr. A4 g2 Withdraw TC

(b) Pattern-2.

Block From
Gas

Price Method To

.

.
n 0xa03...49e8B9 g2 Function1 Contract_Y
n 0xcBD...Fe6E80 g2 Function4 Contract_A
n Addr. A1 g2 Deposit TC
n Addr. A2 g2 Deposit TC
n Addr. A3 g2 Deposit TC
n Addr. A4 g2 Deposit TC

(c) Pattern-3.

Figure 8: Demonstration of the anonymity-compromising patterns discovered through our second analysis step.

by multiple withdrawals (Figure 8b); Pattern-3: finish all the
deposits and then make withdrawals (Figure 8c). Note that, for
Pattern-3, the withdrawal will appear in a later block (not shown
in the figure). It is not difficult for the attacker to realize that
these two patterns are performed by a user who tries to do high-
frequency transactions while obeying the guidebook. As such,
the attacker can link the transactions following these patterns.

Finally, we report the average number of transaction
traces (episodes) analyzed by GuideEnricher to summarize
anonymity-compromising patterns in Figure 8. We collect
in total around 10,000 episodes. After our second analysis
step, we only need to manually analyze 300 episodes to find
these anonymity-compromising patterns. This process takes
about 12 hours. This number demonstrates that GuideEn-
richer requires reasonable human effort when summarizing
anonymity-compromising patterns. Furthermore, we calculate
the percentage of episodes within each cluster, yielding the
following results: Pattern-1 (Figure 8a) 0.15%, Pattern-2
(Figure 8b) 0.11%, and Pattern-3 (Figure 8c) 0.08%. Note that
these patterns have yet to emerge in real historical transactions.
This is because our system has a much larger transaction
volume than the real TC history. We anticipate these patterns
to emerge if TC continues to operate in the future.

6.2 Iterative Discovery

Setup and method. In the second experiment, we delve into
the possibility of finding additional anonymity-compromising
patterns through an iterative update of the detector and the
evader. Specifically, we first update our rule-based detector as
well as our crowd users by incorporating the three anonymity-
compromising patterns identified in Section 6.1. As a result,
our regular users will avoid these anonymity-compromising

Challenge Table & Task Task finishing rate (%) Invalid rate (%) Evading rate (%)
[3] -> 98 100(0.000) 0.056(0.297) 99.944(0.297)

[30]-> 249 100(0.000) 0.039(0.251) 99.961(0.251)
[30,30] -> 248 100(0.000) 0.047(0.284) 99.953(0.284)

[500] -> 999 100(0.000) 0.064(0.382) 99.358(0.382)
[250, 250] -> 998 100(0.000) 0.065(0.360) 99.348(0.359)

Table 3: The performance of the retrained evader agents
trained with different challenge tables and tasks against the
updated detector across 500 trials.

patterns, and the detector will catch any such transactions the
evader makes. Then, under this updated setup, we give the
agent six new challenge tables together with six tasks. Specifi-
cally, we start with a challenge table with one wallet containing
three tokens. We give the evader 98 empty wallets and set the
agent’s task to transfer all the given tokens to the empty wallets
(without specifying the token distribution). For simplicity,
we represent this setting as [3] -> 98. We also configure the
other five more complicated settings: [30] -> 249, [30,30]
-> 248, [500] -> 999, [250, 250] -> 998. The agent’s task in
these five settings is to transfer all the tokens to given empty
wallets without a specific distribution. We retrain the evader
agents (trained on Exp-1 of Section 5) under these six settings
and conduct a second analysis step to find yet-unknown (if
any) anonymity-compromising patterns for the transaction
traces of the updated agents. We updated the agents under
six different challenge tables and tasks to increase the agent’s
probability of exploring diverse transaction patterns. While
learning to finish these tasks, the evader could potentially learn
to discover yet-unknown anonymity-compromising patterns.
This is because the detector will identify all the known ones
and thus result in a low reward for the evader. To achieve a
high reward, the evader will learn to bypass the detector while
learning to finish the task, which may explore yet-unknown
anonymity-compromising patterns.

Result. Table 3 demonstrates the performance of the
retrained evader against the updated detector (i.e., the detector
incorporated with the anonymity-compromising patterns
found in Section 6.1). As shown in Columns 2 and 3, the
agent can always finish its task and seldom establishes invalid
transactions. This demonstrates that the retrained agent still
learns effective strategies to finish the task while maintaining
its ability to take valid actions. This verifies the effectiveness
of our learning algorithm in these retraining tasks. Moreover,
we observe that the agent seldom takes the anonymity-
compromising patterns in the updated guidebook (including
the ones discovered in Section 6.1). This demonstrates that
the evader agent indeed learns to avoid these patterns that
the detector will catch. In other words, the high evading rates
demonstrate that the retrained agents have a certain chance
of exploring yet-unknown anonymity-compromising patterns.
Note that we do not report the final reward in Table 3 in that
it is proportional to the three values in the table (since all three
values are high, the reward is also high). In addition, we also
observe that the training converges faster than the first iteration.
This is because we retrain the agents learned from Section 5,
which already learn how to avoid invalid actions and bypass
the original guidebook. The retrained agents do not need to
pick up this knowledge again and, thus, can converge faster.

We find one yet-unknown anonymity-compromising pattern
(Figure 9). This pattern tries to bypass the rule of “Linked
Address” in the original guidebook. That rule detects if there
are unique deposit-withdrawal or withdrawal-deposit pairs in
TC with unique wallet pairs. Here, a unique wallet pair refers
to two wallets only used in a deposit-withdrawal or withdrawal-
deposit pair and that are not used by any other transactions in
TC. If a unique wallet pair is used to transfer tokens outside TC,
the corresponding deposit-withdrawal or withdrawal-deposit
pair is linkable. All of the retrained agents bypass this rule by
avoiding withdrawing tokens using the wallets that have been
used to transfer tokens outside of TC. Instead, the agent first
transfers the tokens to “fresh” wallets that have not been used
before and then makes deposits and withdrawals using these
fresh wallets. The attacker can examine the set of wallets that
have been used to transfer tokens outside of TC. If the attacker
can find a subset of wallets that always distribute the tokens to
other “fresh” wallets rather than interacting with the TC con-
tract, the attacker can then link the deposit-withdrawal associ-
ated with the “fresh” wallets. Our future work will explore guid-
ing the agent to explore more specifically toward bypassing
the newly added rules. For example, we can assign a stronger
penalty when the agent takes the anonymity-compromising
patterns corresponding to these rules than other patterns.

7 Discussion

Automatic detector update. As mentioned in Section 6.2, our
approach requires manually updating the rule-based detector
based on the yet-unknown anonymity-compromising patterns

Block From Method To

.

.
n-t Addr. A1(Origin) transfer Addr. A2

n-t Addr. A1(Origin) transfer Addr. A3
n-t 0x12D...CEd384 … 0xe0...bc04e1

.

.

n 0xa03...49e8B9 Function1 Contract_Y
n 0xcBD...Fe6E80 Function4 Contract_A
n Addr. A2 Deposit TC
n Addr. A3 Deposit TC
n Addr. A3 Deposit TC
n Addr. A4 Withdraw TC
n Addr. A5 Withdraw TC

Figure 9: A yet-unknown anonymity-compromising pattern
discovered through the additional updates of the evader agent.

discovered by the evader. To automate this process, we can
model the detector as another DRL agent and iteratively update
the evader and detector without any human intervention.
Human experts are only required to analyze the agents’
transaction traces when they converge to an equilibrium.
However, as discussed in Appendix C, automating the detector
as another DRL agent introduces extra challenges that require
non-trivial system design efforts. Given that our proposed
design is already effective in identifying yet-unknown
anonymity-compromising patterns, we keep our single-agent
design and leave the two-agent model as future work.
No guarantee of discovering yet-unknown patterns. It is
extremely difficult to directly train the agent with the task of
discovering yet-unknown anonymity-compromising patterns.
As such, we take an alternative design with an idea similar
to fuzzing. We are aware that there is no guarantee that the
agent will always find yet-unknown patterns (explained in
Section 4.1). This is similar in spirit to fuzzing, which also
cannot guarantee to find all vulnerabilities or achieve very high
coverage. We carefully design the agent’s tasks and integrate
a detector to guide the agent toward discovering yet-unknown
patterns. In Section 6.1, we demonstrate these designs can
help identify such patterns.
Potential risks. We design our method to facilitate the
exploration and mitigating of anonymity compromises in
mixing services. Our goal is to build better guidebooks
for mixing services that protect users’ anonymity. We also
acknowledge that, like many security tools, our method could
potentially be used by attackers to explore new attacks against
mixing services. Nevertheless, we believe that this should
not diminish the value of our method, nor should it hinder the
development of DRL-based tools for security breach discovery
in the blockchain. This scenario is similar to various other se-
curity techniques, such as software fuzzing [13, 24, 28, 34, 55]
and exploit generation [23, 40, 48]. While hackers can wield
these tools to find and exploit vulnerabilities, they have also
significantly benefited the software industry by aiding in the
discovery and remediation of software vulnerabilities (before

and after the software is released).
Limitations. Our approach has several limitations. First, hu-
man experts are necessary to analyze a few representative
transactions (traces) to extract relevant patterns. An interesting
future work could explore further reducing the required human
involvement, potentially by leveraging some explanation meth-
ods for DRL agents [15, 53]. Second, while adding more rules
to the guidebook decreases the risk of identity leakage, it also
imposes more constraints on users when making regular trans-
actions. This could potentially jeopardize the utility of the mix-
ing service, as users may need to invest more time in learning
and adhering to the guidebook. As part of our future research,
we will quantify the impact on utility and explore methods to
mitigate the impact (e.g., make the guidebook user-friendly,
merge some rules in the guidebook, etc). Third, our future work
will also explore improving the generalizability of our evader
agent across challenge tables by training the agent with multi-
ple challenge tables or via transfer learning techniques. Fourth,
we use the Tornado Cash [7] to evaluate GuideEnricher. In our
future work, we will extend GuideEnricher to more mixing
services by incorporating them into our simulator and retrain-
ing the evader agents. We will also investigate customizing
GuideEnricher to other blockchains beyond Ethereum.

8 Related Work

Anonymity analysis of mixing services. Existing re-
search into anonymity compromises of mixing services
of the Ethereum blockchain works in a post-mortem fash-
ion [26, 39, 43, 46, 47], by extracting patterns from historical
transactions. The key difference between existing works and
GuideEnricher is that existing approaches cannot be used to
find yet-unknown anonymity-compromising patterns proac-
tively. In contrast, our method operates proactively and can be
used to explore yet-unknown anonymity-compromising pat-
terns proactively. Note that existing works [26, 39, 43, 46, 47]
reduce human effort by leveraging certain automatic
techniques (e.g., statistical analysis [46, 47], graph neural
networks [26, 39]) for transaction grouping. In our method,
we also utilize automatic statistical methods (i.e., clustering
algorithms) when analyzing our agents’ transaction traces.
DRL for security applications. Motivated by the great suc-
cess of DRL across diverse domains such as robotics [20, 44],
games [32, 41, 42, 45], and self-driving vehicles [25], security
researchers also harness DRL for security applications. Specif-
ically, there are four representative applications: malware
mutation and detection [3, 8, 29, 50, 51, 54], network lateral
movement attack and defense [2, 30], blockchain mining [19],
and program analysis [17, 52]. Among these applications, the
one most related to our research is SquirRL [19]. In this work,
the authors design a DRL agent to explore novel selfish mining
behaviors in blockchains. However, our research focuses on a
very different security aspect of blockchains. Furthermore, our
agent’s design is more complex and, hence, requires a more

advanced learning algorithm. Together with SquirRL [19],
we demonstrate the utility of DRL in discovering security and
privacy issues on the blockchain.

9 Conclusion

This paper introduces GuideEnricher, a DRL-driven method
for proactively discovering anonymity-compromising patterns
in mixing services, requiring limited human involvement. We
extensively evaluate GuideEnricher from multiple aspects
and demonstrate its utility. With these results, we conclude
that DRL can facilitate automatic anonymity-compromising
pattern discovery, greatly benefiting user anonymity.

Acknowledgement

This material is based upon work supported by the National
Science Foundation under grant no. 2229876 and is supported
in part by funds provided by the National Science Foundation,
by the Department of Homeland Security, and by IBM.
Any opinions, findings, conclusions, or recommendations
expressed in this material are those of the author(s) and do
not necessarily reflect the views of the National Science
Foundation or its federal agency and industry partners.

References

[1] Mohiuddin Ahmed, Raihan Seraj, and Syed Mo-
hammed Shamsul Islam. The k-means algorithm: A
comprehensive survey and performance evaluation.
Electronics, 2020.

[2] Iman Akbari, Ezzeldin Tahoun, Mohammad A
Salahuddin, Noura Limam, and Raouf Boutaba. Atmos:
Autonomous threat mitigation in sdn using reinforcement
learning. In NOMS, 2020.

[3] Hyrum S Anderson, Anant Kharkar, Bobby Filar, David
Evans, and Phil Roth. Learning to evade static pe
machine learning malware models via reinforcement
learning. arXiv preprint arXiv:1801.08917, 2018.

[4] Nir Bitansky and Alessandro Chiesa. Succinct arguments
from multi-prover interactive proofs and their efficiency
benefits. In Reihaneh Safavi-Naini and Ran Canetti,
editors, CRYPTO, 2012.

[5] Greg Brockman, Vicki Cheung, Ludwig Pettersson,
Jonas Schneider, John Schulman, Jie Tang, and Wojciech
Zaremba. Openai gym, 2016.

[6] Tornado Cash. Nova. https://tornova.cash, 2023.

[7] Tornado Cash. Tornadocash. https://tornado.cash,
2023.

https://tornova.cash
https://tornado.cash

[8] Kai Chen, Peng Wang, Yeonjoon Lee, XiaoFeng Wang,
Nan Zhang, Heqing Huang, Wei Zou, and Peng Liu.
Finding unknown malice in 10 seconds: Mass vetting
for new threats at the google-play scale. In USENIX
Security, 2015.

[9] cyclone.xyz. Cyclone. https://cyclone.xyz/eth,
2023.

[10] DeepMind. Alphastar: Mastering the real-
time strategy game starcraft ii. h t t p s :
//deepmind.com/blog/article/alphastar, 2017.

[11] ethereum.org. Eip-1559: Fee market change for eth 1.0
chain. https://eips.ethereum.org/EIPS/eip-1
559, 2019.

[12] ethereum.org. zk-rollups. https://ethereum.org/e
n/developers/docs/scaling/zk-rollups, 2023.

[13] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and
Marc Heuse. Afl++ combining incremental steps of
fuzzing research. In Proceedings of the 14th USENIX
Conference on Offensive Technologies, 2020.

[14] getmonero.org. Monero. https://www.getmonero.
org, 2023.

[15] Wenbo Guo, Xian Wu, Usmann Khan, and Xinyu Xing.
Edge: Explaining deep reinforcement learning policies.
NeurIPS, 2021.

[16] Ameer Haj-Ali, Nesreen K Ahmed, Ted Willke, Joseph
Gonzalez, Krste Asanovic, and Ion Stoica. A view on
deep reinforcement learning in system optimization.
arXiv preprint arXiv:1908.01275, 2019.

[17] Kihong Heo, Woosuk Lee, Pardis Pashakhanloo,
and Mayur Naik. Effective program debloating via
reinforcement learning. In CCS, 2018.

[18] Ashley Hill, Antonin Raffin, Maximilian Ernestus,
Adam Gleave, Anssi Kanervisto, Rene Traore, Prafulla
Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol,
Matthias Plappert, Alec Radford, John Schulman,
Szymon Sidor, and Yuhuai Wu. Stable baselines. https:
//github.com/hill-a/stable-baselines, 2018.

[19] Charlie Hou, Mingxun Zhou, Yan Ji, Phil Daian, Florian
Tramer, Giulia Fanti, and Ari Juels. Squirrl: Automating
attack analysis on blockchain incentive mechanisms
with deep reinforcement learning. In NDSS, 2019.

[20] Julian Ibarz, Jie Tan, Chelsea Finn, Mrinal Kalakrishnan,
Peter Pastor, and Sergey Levine. How to train your
robot with deep reinforcement learning: lessons we have
learned. The International Journal of Robotics Research,
2021.

[21] George Kaloudis and Edward Oosterbaan . How Popular
Are Crypto Mixers? Here’s What the Data Tells Us.
https://www.coindesk.com/layer2/2022/01/25
/how-popular-are-crypto-mixers-heres-wha
t-the-data-tells-us, 2022.

[22] Vijay Konda and John Tsitsiklis. Actor-critic algorithms.
In NeurIPS, 1999.

[23] Johannes Krupp and Christian Rossow. teEther:
Gnawing at ethereum to automatically exploit smart
contracts. In USENIX Security, 2018.

[24] Jun Li, Bodong Zhao, and Chao Zhang. Fuzzing: a
survey. In ACM Computing Surveys, 2018.

[25] Quanyi Li, Zhenghao Peng, Zhenghai Xue, Qihang
Zhang, and Bolei Zhou. Metadrive: Composing diverse
driving scenarios for generalizable reinforcement
learning. arXiv preprint arXiv:2109.12674, 2021.

[26] Sijia Li, Gaopeng Gou, Chang Liu, Chengshang Hou,
Zhenzhen Li, and Gang Xiong. TTAGN: Temporal
transaction aggregation graph network for ethereum
phishing scams detection. In WWW, 2022.

[27] Eric Liang, Richard Liaw, Robert Nishihara, Philipp
Moritz, Roy Fox, Ken Goldberg, Joseph Gonzalez,
Michael Jordan, and Ion Stoica. Rllib: Abstractions for
distributed reinforcement learning. In ICML, 2018.

[28] Hongliang Liang, Xiaoxiao Pei, Xiaodong Jia, Wuwei
Shen, and Jian Zhang. Fuzzing: State of the art. IEEE
Transactions on Reliability, 2018.

[29] Enrico Mariconti, Lucky Onwuzurike, Panagiotis
Andriotis, Emiliano De Cristofaro, Gordon J. Ross, and
Gianluca Stringhini. Mamadroid: Detecting android
malware by building markov chains of behavioral
models. In NDSS, 2017.

[30] Microsoft. Cyberbattlesim: Gamifying machine
learning for stronger security and ai models. https:
//github.com/microsoft/CyberBattleSim, 2021.

[31] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi
Mirza, Alex Graves, Timothy Lillicrap, Tim Harley,
David Silver, and Koray Kavukcuoglu. Asynchronous
methods for deep reinforcement learning. In ICML, 2016.

[32] Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep
reinforcement learning. Nature, 2015.

[33] Thanh Thi Nguyen and Vijay Janapa Reddi. Deep rein-
forcement learning for cyber security. IEEE Transactions
on Neural Networks and Learning Systems, 2021.

https://cyclone.xyz/eth
https://deepmind.com/blog/article/alphastar
https://deepmind.com/blog/article/alphastar
https://eips.ethereum.org/EIPS/eip-1559
https://eips.ethereum.org/EIPS/eip-1559
https://ethereum.org/en/developers/docs/scaling/zk-rollups
https://ethereum.org/en/developers/docs/scaling/zk-rollups
https://www.getmonero.org
https://www.getmonero.org
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
https://www.coindesk.com/layer2/2022/01/25/how-popular-are-crypto-mixers-heres-what-the-data-tells-us
https://www.coindesk.com/layer2/2022/01/25/how-popular-are-crypto-mixers-heres-what-the-data-tells-us
https://www.coindesk.com/layer2/2022/01/25/how-popular-are-crypto-mixers-heres-what-the-data-tells-us
https://github.com/microsoft/CyberBattleSim
https://github.com/microsoft/CyberBattleSim

[34] Hui Peng,Yan Shoshitaishvili, and Mathias Payer. T-fuzz:
fuzzing by program transformation. In S&P, 2018.

[35] railgun.org. Railgun. https://www.railgun.org,
2023.

[36] Peter J Rousseeuw. Silhouettes: a graphical aid to the
interpretation and validation of cluster analysis. Journal
of computational and applied mathematics, 1987.

[37] Erich Schubert, Jörg Sander, Martin Ester, Hans Peter
Kriegel, and Xiaowei Xu. Dbscan revisited, revisited:
why and how you should (still) use dbscan. ACM
Transactions on Database Systems (TODS), 2017.

[38] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[39] Jie Shen, Jiajun Zhou, Yunyi Xie, Shanqing Yu, and
Qi Xuan. Identity inference on blockchain using graph
neural network. Communications in Computer and
Information Science, 2021.

[40] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls,
Nick Stephens, Mario Polino, Andrew Dutcher, John
Grosen, Siji Feng, Christophe Hauser, Christopher
Kruegel, and Giovanni Vigna. Sok:(state of) the art of
war: Offensive techniques in binary analysis. In S&P,
2016.

[41] David Silver, Aja Huang, Chris J Maddison, Arthur
Guez, Laurent Sifre, George Van Den Driessche, Julian
Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. Mastering the game of go with
deep neural networks and tree search. Nature, 2016.

[42] David Silver, Thomas Hubert, Julian Schrittwieser,
Ioannis Antonoglou, Matthew Lai, Arthur Guez, Marc
Lanctot, Laurent Sifre, Dharshan Kumaran, Thore
Graepel, et al. Mastering chess and shogi by self-play
with a general reinforcement learning algorithm. arXiv
preprint arXiv:1712.01815, 2017.

[43] Xiaobing Sun, Wenjie Feng, Shenghua Liu, Yuyang
Xie, Siddharth Bhatia, Bryan Hooi, Wenhan Wang, and
Xueqi Cheng. MonLAD. In WSDM, 2022.

[44] Mel Vecerik, Todd Hester, Jonathan Scholz, Fumin
Wang, Olivier Pietquin, Bilal Piot, Nicolas Heess,
Thomas Rothörl, Thomas Lampe, and Martin Riedmiller.
Leveraging demonstrations for deep reinforcement
learning on robotics problems with sparse rewards.
arXiv preprint arXiv:1707.08817, 2017.

[45] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki,
Michaël Mathieu, Andrew Dudzik, Junyoung Chung,
David H Choi, Richard Powell, Timo Ewalds, Petko

Georgiev, et al. Grandmaster level in starcraft ii using
multi-agent reinforcement learning. Nature, 2019.

[46] Zhipeng Wang, Stefanos Chaliasos, Kaihua Qin, Liyi
Zhou, Lifeng Gao, Pascal Berrang, Ben Livshits,
and Arthur Gervais. On how zero-knowledge proof
blockchain mixers improve, and worsen user privacy.
arXiv, 2023.

[47] Mike Wu, Will McTighe, Kaili Wang, Istvan A. Seres,
Nick Bax, Manuel Puebla, Mariano Mendez, Federico
Carrone, Tomás De Mattey, Herman O. Demaestri,
Mariano Nicolini, and Pedro Fontana. Tutela: An
open-source tool for assessing user-privacy on ethereum
and tornado cash. arXiv, 2022.

[48] Wei Wu, Yueqi Chen, Jun Xu, Xinyu Xing, Xiaorui
Gong, and Wei Zou. FUZE: Towards facilitating exploit
generation for kernel Use-After-Free vulnerabilities. In
USENIX Security, 2018.

[49] Liang Xiao, Yuzhen Ding, Donghua Jiang, Jinhao
Huang, Dongming Wang, Jie Li, and H. Vincent Poor.
A reinforcement learning and blockchain-based trust
mechanism for edge networks. In IEEE Transactions
on Communications, 2020.

[50] Jiayun Xu, Yingjiu Li, and Robert H. Deng. Differential
training: A generic framework to reduce label noises for
android malware detection. In NDSS, 2021.

[51] Ke Xu, Yingjiu Li, Robert H. Deng, Kai Chen, and Jiayun
Xu. Droidevolver: Self-evolving android malware
detection system. In EuroS&P, 2019.

[52] Yichen Yang, Jeevana Priya Inala, Osbert Bastani,
Yewen Pu, Armando Solar-Lezama, and Martin Rinard.
Program synthesis guided reinforcement learning for
partially observed environments. In NeurIPS, 2021.

[53] Herman Yau, Chris Russell, and Simon Hadfield. What
did you think would happen? explaining agent behaviour
through intended outcomes. NeurIPS, 2020.

[54] Xiaohan Zhang, Yuan Zhang, Ming Zhong, Daizong
Ding, Yinzhi Cao, Yukun Zhang, Mi Zhang, and Min
Yang. Enhancing state-of-the-art classifiers with API
semantics to detect evolved android malware. In CCS,
2020.

[55] Xiaogang Zhu, Sheng Wen, Seyit Camtepe, and Yang
Xiang. Fuzzing: A survey for roadmap. In ACM
Computing Surveys, 2022.

https://www.railgun.org

Name Description Value
range

action Agent’s previous action (Deposit or Withdraw) 0/1
wait time Minimum number of transactions that the agent has waited

previously
0-200

deposit call address The address used in a prior transaction if the action was a deposit. 0-250
withdraw call address The address used in a prior transaction if the action was a deposit. 0-250
number of deposits Total number of deposits 0-9
balance of deposit call address Last balance of the "deposit call action" 0-3
balance of withdrawing call address Last balance of the "withdraw call address" 0-9
Balance current TC contract Latest balance of the tornado cash contract 0-Inf
The current balance of the evader Latest total balance of the evader (sum of current challenge table) 0-9
Is deposit call address from the challenge table A boolean variable that retains whether the previous deposit address

is distinct from the address initially containing funds for task.
0/1

Is withdraw call address from challenge table A boolean variable that retains whether the previous withdraw ad-
dress is distinct from the address initially given to withdrawal task.

0/1

Table 4: Explanation of each dimension/feature in the evader agent’s observation. The last column specifies this dimension is
about the TC server or the evader.

A Additional Technical Details and Experi-
ment Setups

A.1 Original Guidebook

Table 6 shows the original guidebook of the Tornado Cash
we used in this paper. It lists a set of known anonymity-
compromising actions discovered by existing works.

A.2 Hyper-parameters

Here we specify the hyper-parameters for our DRL agent. We
use a multi-layer perceptron with the architecture of 32 by
32 dense layer layers and the numbers indicate the number of
neurons in each layer. We set the maximum time step in each
episode as 10,000 as the horizon and train the agent for 500
to 1,000 iterations. We use the ADAM optimizer with a learning
rate of 0.001.

A.3 Impact of Negative Reward

We use the same configurations of Exp-1 in Section 5, Fig-
ure 10 shows the different penalty configurations. Penalizing
the same as the reward makes the game more stable in the
training process, resulting in better and faster convergence
for the maximum reward, and low fluctuation in the training
process (resulting in a better model).

B Additional Experiments

B.1 Agent Generalizability across Challenge
Tables

Note that this pattern corresponds to a rule in the original
guidebook rather than the three new ones (added based on
anonymity-compromising patterns found in Section 6.1). In
this experiment, we use the agents trained from Exp-1 5 and
test their effectiveness when we change the challenge tables. In
the first scenario (V1), we asked the agent to transfer 3 tokens
using only 1 wallet. In the second scenario (V2), the agent
was tasked with transferring 6 tokens using 2 wallets, with
3 tokens in each wallet. In the third scenario (V3), the agent
had to transfer 17 tokens that were distributed across three
addresses, with 10 tokens in one address, 5 tokens in another,
and 2 tokens in the third address. For each setup, we run the
agent for 1,000 episodes and record the testing performance.
The result in 5 demonstrates that an agent trained with one
challenge table cannot exhibit enough effectiveness when
applied to other challenge tables.

Challenge table Task finishing rate (%) Invalid rate (%) Evading rate (%)
Exp-1 100(0.000) 00.129(1.119) 99.871(1.119)

V-1 100(0.000) 47.717(18.272) 52.283(18.272)
V-2 100(0.000) 25.073(19.572) 74.927(19.572)
V-3 100(0.000) 87.905(10.216) 12.095(10.216)

Table 5: The percentage of finished tasks and invalid actions of
agents trained with different challenge tables across 1000 trials.

B.2 Hyper-parameter Sensitivity
In this experiment, we use an agent with one single wallet with
3 tokens and tasked to transfer tokens to any given 100 empty

(a) Detection penalty reward equal -1 (b) Detection penalty reward equal -5 (c) Detection penalty reward equal -10

Figure 10: Different Detection penalties.

(a) Policy network with 2, 32 hidden perceptron
layers.

(b) Policy network with 3, 32 hidden perceptron
layers.

(c) Policy network with 2, 64 hidden perceptron
layers.

Figure 11: The agent’s normalized reward when varying its policy network and maximum time steps in each episode.

wallets. We change the parameters of the policy network
and measure the sensitivity of key hyper-parameters of the
policy network architecture. We varied the policy network
architecture length from 2 to 3 and changed the number of
neurons in each layer from 32 to 64. Our goal was to make
the task relatively small and evaluate the effectiveness of the
policy network. In conclusion, both networks have similar per-
formance (see Figure 11). Hence we can use two hidden layers
with 32 perceptrons in each layer as our base policy network.

C Additional Experiments

We conducted a few additional experiments. First, we
conducted an inclusion study on different mixing services
on the ETH chain and other chains. Second, we conducted
experiments on the simulation realism to real-world scenarios
such as address usage analysis. Third, we explained the
modular implementation of simulation, automatic detector
updates, and crowd users’ hard-coded rules. Finally, we
encapsulated the agents’ general evasion strategies against the
initial guidebook rules. Our code, model, scaled plot diagrams,
and experiment explanations are publicly available 4.

4https://github.com/ucsb-seclab/GUIDE-ENRICHER

#
Rule

Tutela:
An Open-
Source Tool
for Assessing
User-Privacy
on Ethereum
and Tornado
Cash [47]

On How
Zero-
Knowledge
Proof
Blockchain
Mixers Im-
prove, and
Worsen User
Privacy [46]

1 Address
Match • Deposit Address Reuse

• Improper Withdrawal Sender

2 Unique Gas
Prices

3 Linked ETH
Addresses

Related
Deposit-
Withdrawal
Address Pair

4 TORN Min-
ing

Table 6: Initial guidebook.

 https://github.com/ucsb-seclab/GUIDE-ENRICHER

	Introduction
	Background
	Anonymity in Ethereum
	Deep Reinforcement Learning

	Problem Scope
	Limitations of Mixing Services
	Problem Setup and Goals

	Our Approach
	Technical Overview
	Simulator and Environment Construction
	Agent Design and Policy Learning

	Implementation and Evaluation
	Implementation and Experiment Setup
	Experiment Design
	Experiment Results

	Utility
	Pattern Discovery
	Iterative Discovery

	Discussion
	Related Work
	Conclusion
	Additional Technical Details and Experiment Setups
	Original Guidebook
	Hyper-parameters
	Impact of Negative Reward

	Additional Experiments
	Agent Generalizability across Challenge Tables
	Hyper-parameter Sensitivity

	Additional Experiments

